Морфологическая характеристика основных групп микроорганизмов. Классификация микроорганизмов

Бактерии относятся к одноклеточным организмам, принадлежат к растительному миру и не содержащим хлорофилла. Наиболее крупными явл.бактерии сибирской язвы и газовой гангрены, а наиболее мелкими ― возбудители бруцеллеза и туляремии.
Три основные формы бактерий : шаровидные (кокки), палочковидные (бактерии, бациллы) и извитые (вибрионы и спириллы).

Шаровидные формы ― по внешнему виду кокки имеют форму шара. Большинство кокков ― сапрофиты, они не образуют спор, неподвижны, широко распространены в природе. Клетки, остающиеся несоед. друг с другом после деления и видимые в препарате как отдельно лежащие кокки, называются микрококками. Клетки, делящиеся в одной плоскости и после деления остающиеся соедин. по две, называются диплококками. Тетракокки и сарцины широко распростр. и не обладают патогенными свойствами.

Палочковидные формы бывают спороносные и песпороносные. По величине: крупные, средние и мелкие палочки, имеющие цилиндр. и овальную форму. Концы клеток могут быть закруглены или срезаны. Клетки, образ. на концах булавовидные утолщения и зернистые включения, наз. коринебактериями. Из коринебактерий к патогенным видам относ. возбудитель дифтерии.

Извитые формы широко распространены в природе. К ним относятся спириллы и вибрионы. Спириллы имеют штопорообразную извитую форму и несколько завитков. Среди спирилл встречается патогенный вид, вызывающий болезнь Содоку. Вибрионы имеют изогнутую форму, напоминающую запятую.

Под влиянием различных факторов внешней среды (t, влажность, биолог. факторы, искусствен. питательные среды) бактерии часто и резко меняют морфологию и некоторые другие свойства.

Грибы и простейшие имеют четко ограниченное ядро и относятся к эукариотам. Грибы крупнее бактерий, близки к растениям (наличие клеточной стенки, содержащей хитин или целлюлозу, вакуолей с клеточным соком, неспособность к перемещению).

Дрожжевые грибы образуют отдельные овальные клетки. Плесневые грибы формируют клеточные нитеподобные структуры - гифы. Мицелий- переплетение гифов- основная морфологическая структура. У низших грибов мицелий одноклеточный, не имеет внутренних перегородок (септ ). Грибы размножаются половым и вегетативным способом. При вегетативном размножении образуются споры - конидии . Они могут располагаться в специализированных вместилищах - спорангиях (эндоспоры) или отшнуровываться от плодоносящих гиф (экзоспоры). Дрожжевые клетки размножаются почкованием, мицелий не образуют.

Водоросли - относятся к растениям. Содержат светочувствительные пигменты, которые находятся в хлоропластах. Благодаря этим пигментам они способны осуществлять фотосистему.

2 типа: зеленая водоросль, диатомовая водоросль

Вирусы открыты при изучении листьев табачной мазаики.

Особенности:

1.Очень маленький размер

2.Не имеют клеточного строения

3.Не могут расти на питательных средах и осущ. бинарное деление

4.Не имеют собственных метаболических систем

6.Репродукция, т.е. воспроизводство вируса осуществляется только в клетке хозяина

Многоклеточные животные организмы : коловратки, черви, низшие ракообразные

2.1. Систематика и номенклатура микробов

Мир микробов можно разделить на клеточные и неклеточные формы. Клеточные формы микробов представлены бактериями, грибами и простейшими. Их можно называть микроорганизмами. Неклеточные формы представлены вирусами, вироидами и прионами.

Новая классификация клеточных микробов включает следующие таксономические единицы: домены, царства, типы, классы, порядки, семейства, роды, виды. В основу классификации микроорганизмов положены их генетическое родство, а также морфологические, физиологические, антигенные и молекулярнобиологические свойства.

Вирусы нередко рассматриваются не как организмы, а как автономные генетические структуры, поэтому они будут рассмотрены отдельно.

Клеточные формы микробов разделены на три домена. Домены Bacteria и Archaebacteria включают микробы с прокариотическим типом строения клетки. Представители домена Eukarya являются эукариотами. Он состоит из 4 царств:

Царства грибов (Fungi, Eumycota);

царства простейших (Protozoa);

царства Chromista (хромовики);

Микробов с неуточненным таксономическим положением (Microspora, микроспоридии).

Различия в организации прокариотической и эукариотической клеток представлены в табл. 2.1.

Таблица 2.1. Признаки прокариотической и эукариотической клетки

2.2. Классификация и морфология бактерий

Термин «бактерия» происходит от слова bacterion, что означает палочка. Бактерии относятся к прокариотам. Их разделяют на два домена: Bacteria и Archaebacteria. Бактерии, входящие в домен Archaebacteria, представляют одну из древнейших форм жизни. Они имеют особенности строения клеточной стенки (у них отсутствует пептидогликан) и рибосомальной РНК. Среди них отсутствуют возбудители инфекционных заболеваний.

Внутри домена бактерии подразделяются на следующие таксономические категории: класс, тип, порядок, семейство, род, вид. Одной из основных таксономических категорий является вид (species). Вид - это совокупность особей, имеющих единое происхождение и генотип, объединенные по близким свойствам, отличающим их от других представителей рода. Название вида соответствует бинарной номенклатуре, т.е. состоит из двух слов. Например, возбудитель дифтерии пишется как Corynebacterium diphtheriae. Первое слово - название рода и пишется с прописной буквы, второе слово обозначает вид и пишется со строчной буквы.

При повторном упоминании вида родовое название сокращается до начальной буквы, например C. diphtheriae.

Совокупность однородных микроорганизмов, выделенных на питательной среде, характеризующихся сходными морфологическими, тинкториальными (отношение к красителям), культуральными, биохимическими и антигенными свойствами, называется чистой культурой. Чистая культура микроорганизмов, выделенных из определенного источника и отличающихся от других представителей вида, называется штаммом. Близким к понятию «штамм» является понятие «клон». Клон представляет собой совокупность потомков, выращенных из единственной микробной клетки.

Для обозначения некоторых совокупностей микроорганизмов, отличающихся по тем или иным свойствам, употребляется суффикс «вар» (разновидность), поэтому микроорганизмы в зависимости от характера различий обозначают как морфовары (отличие по морфологии), резистентовары (отличие по устойчивости, например, к антибиотикам), серовары (отличие по антигенам), фаговары (отличие по чувствительности к бактериофагам), биовары (отличие по биологическим свойствам), хемовары (отличие по биохимическим свойствам) и т.д.

Раньше основу классификации бактерий составляла особенность строения клеточной стенки. Подразделение бактерий по особенностям строения клеточной стенки связано с возможной вариабельностью их окраски в тот или иной цвет по методу Грама. Согласно этому методу, предложенному в 1884 г. датским ученым Х. Грамом, в зависимости от результатов окраски бактерии делятся на грамположительные, окрашиваемые в сине-фиолетовый цвет, и грамотрицательные, окрашиваемые в красный цвет.

В настоящее время основу классификации составляет степень генетического родства, основанная на изучении строения генома рибосомных РНК (рРНК) (см. главу 5), определении процентного содержания в геноме гуанинцитозиновых пар (ГЦ-пары), построении рестрикционной карты генома, изучении степени гибридизации. Также учитываются и фенотипические показатели: отношение к окраске по Граму, морфологические, культуральные и биохимические свойства, антигенная структура.

Домен Bacteria включает 23 типа, из которых медицинское значение имеют нижеизложенные.

Большинство грамотрицательных бактерий объединены в тип Proteobacteria (по имени греческого бога Proteus, способного принимать различные облики). Тип Proteobacteria подразделен на 5 классов:

Класс Alphaproteobacteria (роды Rickettsia, Orientia, Erlichia, Bartonella, Brucella);

класс Betaproteobacteria (роды Вordetellа, Burholderia, Neisseria, Spirillum);

Класс Gammaproteobacteria (представители семейства Enterobacteriaceae, роды Francisella, Legionella, Coxiella, Pseudomonas, Vibrio);

Класс Deltaproteobacteria (род Bilophila);

Класс Epsilonproteobacteria (роды Campilobacter, Helicobacter). Грамотрицательные бактерии входят также в следующие типы:

тип Chlamydiae (роды Chlamydia, Chlamydophila), тип Spirochaetes (роды Spirocheta, Borrelia, Treponema, Leptospira); тип Bacteroides (роды Bacteroides, Prevotella, Porphyromonas).

Грамположительные бактерии входят в следующие типы:

Тип Firmicutes включает класс Clostridium (роды Clostridium, Peptococcus), класс Bacilli (Listeria, Staphylococcus, Lactobacillus, Streptococcus) и класс Mollicutes (роды Mycoplasma, Ureaplasma), которые являются бактериями, не имеющими клеточную стенку;

тип Actinobacteria (роды Actinomyces, Micrococcus, Corynebacterium, Mycobacterium, Gardnerella, Bifidobacterium, Propionibacterium, Mobiluncus).

2.2.1. Морфологические формы бактерий

Различают несколько основных форм бактерий: кокковидные, палочковидные, извитые и ветвящиеся (рис. 2.1).

Сферические формы, или кокки - шаровидные бактерии размером 0,5-1 мкм, которые по взаимному расположению делятся на микрококки, диплококки, стрептококки, тетракокки, сарцины и стафилококки.

Микрококки (от греч. micros - малый) - отдельно расположенные клетки.

Диплококки (от греч. diploos - двойной), или парные кокки, располагаются парами (пневмококк, гонококк, менингококк), так как клетки после деления не расходятся. Пневмококк (возбудитель пневмонии) имеет с противоположных сторон ланцетовидную форму, а гонококк (возбудитель гонореи) и менингококк (возбу-

Рис. 2.1. Формы бактерий

дитель эпидемического менингита) имеют форму кофейных зерен, обращенных вогнутой поверхностью друг к другу.

Стрептококки (от греч. streptos - цепочка) - клетки округлой или вытянутой формы, составляющие цепочку вследствие деления клеток в одной плоскости и сохранения связи между ними в месте деления.

Сарцины (от лат. sarcina - связка, тюк) располагаются в виде пакетов из 8 кокков и более, так как они образуются при делении клетки в трех взаимно перпендикулярных плоскостях.

Стафилококки (от греч. staphyle - виноградная гроздь) - кокки, расположенные в виде грозди винограда в результате деления в разных плоскостях.

Палочковидные бактерии различаются по размерам, форме концов клетки и взаимному расположению клеток. Длина клеток 1-10 мкм, толщина 0,5-2 мкм. Палочки могут быть правильной

(кишечная палочка и др.) и неправильной булавовидной (коринебактерии и др.) формы. К наиболее мелким палочковидным бактериям относятся риккетсии.

Концы палочек могут быть как бы обрезанными (сибиреязвенная бацилла), закругленными (кишечная палочка), заостренными (фузобактерии) или в виде утолщения. В последнем случае палочка похожа на булаву (коринебактерии дифтерии).

Слегка изогнутые палочки называются вибрионами (холерный вибрион). Большинство палочковидных бактерий располагается беспорядочно, так как после деления клетки расходятся. Если после деления клетки остаются связанными общими фрагментами клеточной стенки и не расходятся, то они располагаются под углом друг к другу (коринебактерии дифтерии) или образуют цепочку (сибиреязвенная бацилла).

Извитые формы - спиралевидные бактерии, которые бывают двух видов: спириллы и спирохеты. Спириллы имеют вид штопорообразно извитых клеток с крупными завитками. К патогенным спириллам относятся возбудитель содоку (болезнь укуса крыс), а также кампилобактерии и хеликобактерии, имеющие изгибы, напоминающие крылья летящей чайки. Спирохеты представляют тонкие длинные извитые бактерии, отличающиеся от спирилл более мелкими завитками и характером движения. Особенность их строения описана ниже.

Ветвящиеся - палочковидные бактерии, которые могут иметь разветвление в форме латинской буквы Y, встречающиеся у бифидобактерий, также быть представленными в виде нитевидных разветвленных клеток, способных переплетаться, образуя мицелий, что наблюдается у актиномицет.

2.2.2. Структура бактериальной клетки

Структура бактерий хорошо изучена с помощью электронной микроскопии целых клеток и их ультратонких срезов, а также других методов. Бактериальную клетку окружает оболочка, состоящая из клеточной стенки и цитоплазматической мембраны. Под оболочкой находится протоплазма, состоящая из цитоплазмы с включениями и наследственного аппарата - аналога ядра, называемого нуклеоидом (рис. 2.2). Имеются дополнительные структуры: капсула, микрокапсула, слизь, жгутики, пили. Некоторые бактерии в неблагоприятных условиях способны образовывать споры.

Рис. 2.2. Структура бактериальной клетки: 1 - капсула; 2 - клеточная стенка; 3 - цитоплазматическая мембрана; 4 - мезосомы; 5 - нуклеоид; 6 - плазмида; 7 - рибосомы; 8 - включения; 9 - жгутик; 10 - пили (ворсинки)

Клеточная стенка - прочная, упругая структура, придающая бактерии определенную форму и вместе с подлежащей цитоплазматической мембраной сдерживающая высокое осмотическое давление в бактериальной клетке. Она участвует в процессе деления клетки и транспорте метаболитов, имеет рецепторы для бактериофагов, бактериоцинов и различных веществ. Наиболее толстая клеточная стенка у грамположительных бактерий (рис. 2.3). Так, если толщина клеточной стенки грамотрицательных бактерий около 15-20 нм, то у грамположительных она может достигать 50 нм и более.

Основу клеточной стенки бактерий составляет пептидогликан. Пептидогликан является полимером. Он представлен параллельными полисахаридными гликановыми цепями, состоящими из повторяющихся остатков N-ацетилглюкозамина и N-ацетилмурамовой кислоты, соединенных гликозидной связью. Эту связь разрывает лизоцим, являющийся ацетилмурамидазой.

К N-ацетилмурамовой кислоте ковалентными связями присоединен тетрапептид. Тетрапептид состоит из L-аланина, который связан с N-ацетилмурамовой кислотой; D-глутамина, который у грамположительных бактерий соединен с L-лизином, а у грамотри-

Рис. 2.3. Схема архитектоники клеточной стенки бактерий

цательных бактерий - с диаминопимелиновой кислотой (ДАП), которая представляет собой предшественник лизина в процессе бактериального биосинтеза аминокислот и является уникальным соединением, присутствующим только у бактерий; 4-й аминокислотой является D-аланин (рис. 2.4).

В клеточной стенке грамположительных бактерий содержится небольшое количество полисахаридов, липидов и белков. Основным компонентом клеточной стенки этих бактерий является многослойный пептидогликан (муреин, мукопептид), составляющий 40-90% массы клеточной стенки. Тетрапептиды разных слоев пептидогликана у грамположительных бактерий соединены друг с другом полипептидными цепочками из 5 остатков глицина (пентаглицина), что придает пептидогликану жесткую геометрическую структуру (рис. 2.4, б). С пептидогликаном ктеточной стенки грамположительных бактерий ковалентно связаны тейхоевые кислоты (от греч. tekhos - стенка), молекулы которых представляют собой цепи из 8-50 остатков глицерола и рибитола, соединенных фосфатными мостиками. Форму и прочность бактериям придает жесткая волокнистая структура многослойного, с поперечными пептидными сшивками пептидогликана.

Рис. 2.4. Структура пептидогликана: а - грамотрицательные бактерии; б - грамположительные бактерии

Способность грамположительных бактерий при окраске по Граму удерживать генциановый фиолетовый в комплексе с йодом (сине-фиолетовая окраска бактерий) связана со свойством многослойного пептидогликана взаимодействовать с красителем. Кроме этого последующая обработка мазка бактерий спиртом вызывает сужение пор в пептидогликане и тем самым задерживает краситель в клеточной стенке.

Грамотрицательные бактерии после воздействия спиртом утрачивают краситель, что обусловлено меньшим количеством пептидогликана (5-10% массы клеточной стенки); они обесцвечиваются спиртом, и при обработке фуксином или сафранином приобретают красный цвет. Это связано с особенностями строения клеточной стенки. Пептидогликан в клеточной стенке грамотрицательных бактерий представлен 1-2 слоями. Тетрапептиды слоев соединены между собой прямой пептидной связью между аминогруппой ДАП одного тетрапептида и карбоксильной группой D-аланина тетрапептида другого слоя (рис. 2.4, а). Кнаружи от пептидогликана расположен слой липопротеина, соединенный с пептидогликаном через ДАП. За ним следует наружная мембрана клеточной стенки.

Наружная мембрана является мозаичной структурой, представленной липополисахаридами (ЛПС), фосфолипидами и белками. Внутренний слой ее представлен фосфолипидами, а в наружном слое расположен ЛПС (рис. 2.5). Таким образом, наружная мем-

Рис. 2.5. Структура липополисахарида

брана асимметрична. ЛПС наружной мембраны состоит из трех фрагментов:

Липида А - консервативной структуры, практически одинаковой у грамотрицательных бактерий. Липид А состоит из фосфорилированных глюкозоаминовых дисахаридных единиц, к которым прикреплены длинные цепочки жирных кислот (см. рис. 2.5);

Ядра, или стержневой, коровой части (от лат. core - ядро), относительно консервативной олигосахаридной структуры;

Высоковариабельной О-специфической цепи полисахарида, образованной повторяющимися идентичными олигосахаридными последовательностями.

ЛПС заякорен в наружной мембране липидом А, обусловливающим токсичность ЛПС и отождествляемым поэтому с эндотоксином. Разрушение бактерий антибиотиками приводит к освобождению большого количества эндотоксина, что может вызвать у больного эндотоксический шок. От липида А отходит ядро, или стержневая часть ЛПС. Наиболее постоянной частью ядра ЛПС является кетодезоксиоктоновая кислота. О-специфическая полисахаридная цепь, отходящая от стержневой части молекулы ЛПС,

состоящая из повторяющихся олигосахаридных единиц, обусловливает серогруппу, серовар (разновидность бактерий, выявляемая с помощью иммунной сыворотки) определенного штамма бактерий. Таким образом, с понятием ЛПС связаны представления об О-антигене, по которому можно дифференцировать бактерии. Генетические изменения могут привести к дефектам, укорочению ЛПС бактерий и появлению в результате этого шероховатых колоний R-форм, теряющих О-антигенную специфичность.

Не все грамотрицательные бактерии имеют полноценную О-специфическую полисахаридную цепь, состоящую из повторяющихся олигосахаридных единиц. В частности, бактерии рода Neisseria имеют короткий гликолипид, который называется липоолигосахаридом (ЛОС). Он сравним с R-формой, потерявшей О-антигенную специфичность, наблюдаемой у мутантных шероховатых штаммов E. coli. Структура ЛОС напоминает структуру гликосфинголипида цитоплазматической мембраны человека, поэтому ЛОС мимикрирует микроб, позволяя ему избегать иммунного ответа хозяина.

Белки матрикса наружной мембраны пронизывают ее таким образом, что молекулы белка, называемые поринами, окаймляют гидрофильные поры, через которые проходят вода и мелкие гидрофильные молекулы с относительной массой до 700 Д.

Между наружной и цитоплазматической мембраной находится периплазматическое пространство, или периплазма, содержащая ферменты (протеазы, липазы, фосфатазы, нуклеазы, β-лактамазы), а также компоненты транспортных систем.

При нарушении синтеза клеточной стенки бактерий под влиянием лизоцима, пенициллина, защитных факторов организма и других соединений образуются клетки с измененной (часто шаровидной) формой: протопласты - бактерии, полностью лишенные клеточной стенки; сферопласты - бактерии с частично сохранившейся клеточной стенкой. После удаления ингибитора клеточной стенки такие измененные бактерии могут реверсировать, т.е. приобретать полноценную клеточную стенку и восстанавливать исходную форму.

Бактерии сфероили протопластного типа, утратившие способность к синтезу пептидогликана под влиянием антибиотиков или других факторов и способные размножаться, называются L-формами (от названия Института им. Д. Листера, где они впер-

вые были изучены). L-формы могут возникать и в результате мутаций. Они представляют собой осмотически чувствительные, шаровидные, колбовидные клетки различной величины, в том числе и проходящие через бактериальные фильтры. Некоторые L-формы (нестабильные) при удалении фактора, приведшего к изменениям бактерий, могут реверсировать, возвращаясь в исходную бактериальную клетку. L-формы могут образовывать многие возбудители инфекционных болезней.

Цитоплазматическая мембрана при электронной микроскопии ультратонких срезов представляет собой трехслойную мембрану (2 темных слоя толщиной по 2,5 нм каждый разделены светлым - промежуточным). По структуре она похожа на плазмолемму клеток животных и состоит из двойного слоя липидов, главным образом фосфолипидов, с внедренными поверхностными, а также интегральными белками, как бы пронизывающими насквозь структуру мембраны. Некоторые из них являются пермеазами, участвующими в транспорте веществ. В отличие от эукариотических клеток, в цитоплазматической мембране бактериальной клетки отсутствуют стеролы (за исключением микоплазм).

Цитоплазматическая мембрана является динамической структурой с подвижными компонентами, поэтому ее представляют как мобильную текучую структуру. Она окружает наружную часть цитоплазмы бактерий и участвует в регуляции осмотического давления, транспорте веществ и энергетическом метаболизме клетки (за счет ферментов цепи переноса электронов, аденозинтрифосфатазы - АТФазы и др.). При избыточном росте (по сравнению с ростом клеточной стенки) цитоплазматическая мембрана образует инвагинаты - впячивания в виде сложно закрученных мембранных структур, называемые мезосомами. Менее сложно закрученные структуры называются внутрицитоплазматическими мембранами. Роль мезосом и внутрицитоплазматических мембран до конца не выяснена. Предполагают даже, что они являются артефактом, возникающим после приготовления (фиксации) препарата для электронной микроскопии. Тем не менее считают, что производные цитоплазматической мембраны участвуют в делении клетки, обеспечивая энергией синтез клеточной стенки, принимают участие в секреции веществ, спорообразовании, т.е. в процессах с высокой затратой энергии. Цитоплазма занимает основной объем бактери-

альной клетки и состоит из растворимых белков, рибонуклеиновых кислот, включений и многочисленных мелких гранул - рибосом, ответственных за синтез (трансляцию) белков.

Рибосомы бактерий имеют размер около 20 нм и коэффициент седиментации 70S, в отличие от 80S-рибосом, характерных для эукариотических клеток. Поэтому некоторые антибиотики, связываясь с рибосомами бактерий, подавляют синтез бактериального белка, не влияя на синтез белка эукариотических клеток. Рибосомы бактерий могут диссоциировать на две субъединицы: 50S и 30S. рРНК - консервативные элементы бактерий («молекулярные часы» эволюции). 16S-рРНК входит в состав малой субъединицы рибосом, а 23S-рРНК - в состав большой субъединицы рибосом. Изучение 16S рРНК является основой геносистематики, позволяя оценить степень родства организмов.

В цитоплазме имеются различные включения в виде гранул гликогена, полисахаридов, β-оксимасляной кислоты и полифосфатов (волютин). Они накапливаются при избытке питательных веществ в окружающей среде и выполняют роль запасных веществ для питания и энергетических потребностей.

Волютин обладает сродством к основным красителям и легко выявляется с помощью специальных методов окраски (например, по Нейссеру) в виде метахроматических гранул. Толуидиновым синим или метиленовым голубым волютин окрашивается в краснофиолетовый цвет, а цитоплазма бактерии - в синий. Характерное расположение гранул волютина выявляется у дифтерийной палочки в виде интенсивно прокрашивающихся полюсов клетки. Метахроматическое окрашивание волютина связано с высоким содержанием полимеризованного неорганического полифосфата. При электронной микроскопии они имеют вид электронноплотных гранул размером 0,1-1 мкм.

Нуклеоид - эквивалент ядра у бактерий. Он расположен в центральной зоне бактерий в виде двунитевой ДНК, плотно уложенной наподобие клубка. Нуклеоид бактерий, в отличие от эукариот, не имеет ядерной оболочки, ядрышка и основных белков (гистонов). У большинства бактерий содержится одна хромосома, представленная замкнутой в кольцо молекулой ДНК. Но у некоторых бактерий имеются две хромосомы кольцевой формы (V. cholerae) и линейные хромосомы (см. раздел 5.1.1). Нуклеоид выявляется в световом микроскопе после окраски специфическими для ДНК

методами: по Фельгену или по Романовскому-Гимзе. На электронограммах ультратонких срезов бактерий нуклеоид имеет вид светлых зон с фибриллярными, нитевидными структурами ДНК, связанной определенными участками с цитоплазматической мембраной или мезосомой, участвующими в репликации хромосомы.

Кроме нуклеоида, в бактериальной клетке имеются внехромосомные факторы наследственности - плазмиды (см. раздел 5.1.2), представляющие собой ковалентно замкнутые кольца ДНК.

Капсула, микрокапсула, слизь. Капсула - слизистая структура толщиной более 0,2 мкм, прочно связанная с клеточной стенкой бактерий и имеющая четко очерченные внешние границы. Капсула различима в мазках-отпечатках из патологического материала. В чистых культурах бактерий капсула образуется реже. Она выявляется при специальных методах окраски мазка по Бурри- Гинсу, создающих негативное контрастирование веществ капсулы: тушь создает темный фон вокруг капсулы. Капсула состоит из полисахаридов (экзополисахаридов), иногда из полипептидов, например у сибиреязвенной бациллы она состоит из полимеров D-глутаминовой кислоты. Капсула гидрофильна, включает большое количество воды. Она препятствует фагоцитозу бактерий. Капсула антигенна: антитела к капсуле вызывают ее увеличение (реакция набухания капсулы).

Многие бактерии образуют микрокапсулу - слизистое образование толщиной менее 0,2 мкм, выявляемое лишь при электронной микроскопии.

От капсулы следует отличать слизь - мукоидные экзополисахариды, не имеющие четких внешних границ. Слизь растворима в воде.

Мукоидные экзополисахариды характерны для мукоидных штаммов синегнойной палочки, часто встречающихся в мокроте больных кистозным фиброзом. Бактериальные экзополисахариды участвуют в адгезии (прилипании к субстратам); их еще называют гликокаликсом.

Капсула и слизь предохраняют бактерии от повреждений, высыхания, так как, являясь гидрофильными, хорошо связывают воду, препятствуют действию защитных факторов макроорганизма и бактериофагов.

Жгутики бактерий определяют подвижность бактериальной клетки. Жгутики представляют собой тонкие нити, берущие на-

чало от цитоплазматической мембраны, имеют большую длину, чем сама клетка. Толщина жгутиков 12-20 нм, длина 3-15 мкм. Они состоят из трех частей: спиралевидной нити, крюка и базального тельца, содержащего стержень со специальными дисками (одна пара дисков у грамположительных и две пары у грамотрицательных бактерий). Дисками жгутики прикреплены к цитоплазматической мембране и клеточной стенке. При этом создается эффект электромотора со стержнем - ротором, вращающим жгутик. В качестве источника энергии используется разность протонных потенциалов на цитоплазматической мембране. Механизм вращения обеспечивает протонная АТФ-синтетаза. Скорость вращения жгутика может достигать 100 об/с. При наличии у бактерии нескольких жгутиков они начинают синхронно вращаться, сплетаясь в единый пучок, образующий своеобразный пропеллер.

Жгутики состоят из белка - флагеллина (flagellum - жгутик), являющегося антигеном - так называемый Н-антиген. Субъединицы флагеллина закручены в виде спирали.

Число жгутиков у бактерий разных видов варьирует от одного (монотрих) у холерного вибриона до десятка и сотен, отходящих по периметру бактерии (перитрих), у кишечной палочки, протея и др. Лофотрихи имеют пучок жгутиков на одном из концов клетки. Амфитрихи имеют по одному жгутику или пучку жгутиков на противоположных концах клетки.

Жгутики выявляют с помощью электронной микроскопии препаратов, напыленных тяжелыми металлами, или в световом микроскопе после обработки специальными методами, основанными на протравливании и адсорбции различных веществ, приводящих к увеличению толщины жгутиков (например, после серебрения).

Ворсинки, или пили (фимбрии) - нитевидные образования, более тонкие и короткие (3-10 нм * 0,3-10 мкм), чем жгутики. Пили отходят от поверхности клетки и состоят из белка пилина. Известно несколько типов пилей. Пили общего типа отвечают за прикрепления к субстрату, питание и водно-солевой обмен. Они многочисленны - несколько сотен на клетку. Половые пили (1-3 на клетку) создают контакт между клетками, осуществляя между ними передачу генетической информации путем конъюгации (см. главу 5). Особый интерес представляют пили IV типа, у которых концы обладают гидрофобностью, в результате чего они закручиваются, эти пили называют еще кудряшками. Располага-

ются они по полюсам клетки. Эти пили встречаются у патогенных бактерий. Они обладают антигенными свойствами, осуществляют контакт бактерии с клеткой-хозяином, участвуют в образовании биопленки (см. главу 3). Многие пили являются рецепторами для бактериофагов.

Споры - своеобразная форма покоящихся бактерий с грамположительным типом строения клеточной стенки. Спорообразующие бактерии рода Bacillus, у которых размер споры не превышает диаметр клетки, называются бациллами. Спорообразующие бактерии, у которых размер споры превышает диаметр клетки, отчего они принимают форму веретена, называются клостридиями, например бактерии рода Clostridium (от лат. Clostridium - веретено). Споры кислотоустойчивы, поэтому окрашиваются по методу Ауески или по методу Циля-Нельсена в красный, а вегетативная клетка - в синий цвет.

Спорообразование, форма и расположение спор в клетке (вегетативной) являются видовым свойством бактерий, что позволяет отличать их друг от друга. Форма спор бывает овальной и шаровидной, расположение в клетке - терминальное, т.е. на конце палочки (у возбудителя столбняка), субтерминальное - ближе к концу палочки (у возбудителей ботулизма, газовой гангрены) и центральное (у сибиреязвенной бациллы).

Процесс спорообразования (споруляция) проходит ряд стадий, в течение которых часть цитоплазмы и хромосома бактериальной вегетативной клетки отделяются, окружаясь врастающей цитоплазматической мембраной, - образуется проспора.

В протопласте проспоры находятся нуклеоид, белоксинтезирующая система и система получения энергии, основанная на гликолизе. Цитохромы отсутствуют даже у аэробов. Не содержится АТФ, энергия для прорастания сохраняется в форме 3-глицеринфосфата.

Проспору окружают две цитоплазматические мембраны. Слой, окружающий внутреннюю мембрану споры, называется стенкой споры, он состоит из пептидогликана и является главным источником клеточной стенки при прорастании споры.

Между наружной мембраной и стенкой споры формируется толстый слой, состоящий из пептидогликана, имеющего много сшивок, - кортекс.

Кнаружи от внешней цитоплазматической мембраны расположена оболочка споры, состоящая из кератиноподобных белков, со-

держащих множественные внутримолекулярные дисульфидные связи. Эта оболочка обеспечивает резистентность к химическим агентам. Споры некоторых бактерий имеют дополнительный покров - экзоспориум липопротеиновой природы. Таким образом формируется многослойная плохо проницаемая оболочка.

Спорообразование сопровождается интенсивным потреблением проспорой, а затем и формирующейся оболочкой споры дипиколиновой кислоты и ионов кальция. Спора приобретает термоустойчивость, которую связывают с наличием в ней дипиколината кальция.

Спора долго может сохраняться из-за наличия многослойной оболочки, дипиколината кальция, низкого содержания воды и вялых процессов метаболизма. В почве, например, возбудители сибирской язвы и столбняка могут сохраняться десятки лет.

В благоприятных условиях споры прорастают, проходя три последовательные стадии: активации, инициации, вырастания. При этом из одной споры образуется одна бактерия. Активация - это готовность к прорастанию. При температуре 60-80 °С спора активируется для прорастания. Инициация прорастания длится несколько минут. Стадия вырастания характеризуется быстрым ростом, сопровождающимся разрушением оболочки и выходом проростка.

2.2.3. Особенности строения спирохет, риккетсий, хламидий, актиномицет и микоплазм

Спирохеты - тонкие длинные извитые бактерии. Они состоят из наружной мембранной клеточной стенки, которая окружает цитоплазматический цилиндр. Поверх наружной мембраны располагается прозрачный чехол гликозаминогликановой природы. Под наружной мембранной клеточной стенки располагаются фибриллы, закручивающиеся вокруг цитоплазматического цилиндра, придавая бактериям винтообразную форму. Фибриллы прикреплены к концам клетки и направлены навстречу друг другу. Число и расположение фибрилл варьируют у разных видов. Фибриллы участвуют в передвижении спирохет, придавая клеткам вращательное, сгибательное и поступательное движение. При этом спирохеты образуют петли, завитки, изгибы, которые названы вторичными завитками. Спирохеты плохо воспринимают красители. Обычно их окрашивают по Романовскому-Гимзе или серебрением. В живом

виде спирохеты исследуют с помощью фазово-контрастной или темнопольной микроскопии.

Спирохеты представлены тремя родами, патогенными для человека: Treponema, Borrelia, Leptospira.

Трепонемы (род Treponema) имеют вид тонких штопорообразно закрученных нитей с 8-12 равномерными мелкими завитками. Вокруг протопласта трепонем расположены 3-4 фибриллы (жгутики). В цитоплазме имеются цитоплазматические филаменты. Патогенными представителями являются Т. pallidum - возбудитель сифилиса, T. pertenue - возбудитель тропической болезни - фрамбезии. Имеются и сапрофиты - обитатели полости рта человека, ила водоемов.

Боррелии (род Borrelia), в отличие от трепонем, более длинные, имеют по 3-8 крупных завитков и 7-20 фибрилл. К ним относятся возбудитель возвратного тифа (В. recurrentis) и возбудители болезни Лайма (В. burgdorferi) и других заболеваний.

Лептоспиры (род Leptospira) имеют завитки неглубокие и частые в виде закрученной веревки. Концы этих спирохет изогнуты наподобие крючков с утолщениями на концах. Образуя вторичные завитки, они приобретают вид букв S или С; имеют две осевые фибриллы. Патогенный представитель L. interrogans вызывает лептоспироз при попадании в организм с водой или пищей, приводя к кровоизлияниям и желтухе.

Риккетсии обладают независимым от клетки хозяина метаболизмом, однако, возможно, они получают от клетки хозяина макроэргические соединения для своего размножения. В мазках и тканях их окрашивают по Романовскому-Гимзе, по Маккиавелло- Здродовскому (риккетсии красного цвета, а инфицированные клетки - синего).

У человека риккетсии вызывают эпидемический сыпной тиф (R. prowazekii), клещевой риккетсиоз (R. sibirica), пятнистую лихорадку Скалистых гор (R. rickettsii) и другие риккетсиозы.

Строение их клеточной стенки напоминает таковую грамотрицательных бактерий, хотя имеются отличия. Она не содержит типичного пептидогликана: в его составе полностью отсутствует N-ацетилмурамовая кислота. В состав клеточной стенки входит двойная наружная мембрана, которая включает липополисахарид и белки. Несмотря на отсутствие пептидогликана, клеточная стенка хламидий обладает ригидностью. Цитоплазма клетки ограничена внутренней цитоплазматической мембраной.

Основным методом выявления хламидий является окраска по Романовскому-Гимзе. Цвет окраски зависит от стадии жизненного цикла: элементарные тельца окашиваются в пурпурный цвет на фоне голубой цитоплазмы клетки, ретикулярные тельца - в голубой цвет.

У человека хламидии вызывают поражения глаз (трахома, конъюнктивит), урогенитального тракта, легких и др.

Актиномицеты - ветвящиеся, нитевидные или палочковидные грамположительные бактерии. Свое название (от греч. actis - луч, mykes - гриб) они получили в связи с образованием в пораженных тканях друз - гранул из плотно переплетенных нитей в виде

лучей, отходящих от центра и заканчивающихся колбовидными утолщениями. Актиномицеты, как и грибы, образуют мицелий - нитевидные переплетающиеся клетки (гифы). Они формируют субстратный мицелий, образующийся в результате врастания клеток в питательную среду, и воздушный, растущий на поверхности среды. Актиномицеты могут делиться путем фрагментации мицелия на клетки, похожие на палочковидные и кокковидные бактерии. На воздушных гифах актиномицетов образуются споры, служащие для размножения. Споры актиномицетов обычно не термостойки.

Общую филогенетическую ветвь с актиномицетами образуют так называемые нокардиоподобные (нокардиоформные) актиномицеты - собирательная группа палочковидных бактерий неправильной формы. Их отдельные представители образуют ветвящиеся формы. К ним относят бактерии родов Corynebacterium, Mycobacterium, Nocardia и др. Нокардиоподобные актиномицеты отличаются наличием в клеточной стенке сахаров арабинозы, галактозы, а также миколовых кислот и больших количеств жирных кислот. Миколовые кислоты и липиды клеточных стенок обусловливают кислотоустойчивость бактерий, в частности микобактерий туберкулеза и лепры (при окраске по Цилю-Нельсену они имеют красный цвет, а некислотоустойчивые бактерии и элементы ткани, мокроты - синий цвет).

Патогенные актиномицеты вызывают актиномикоз, нокардии - нокардиоз, микобактерии - туберкулез и лепру, коринебактерии - дифтерию. Сапрофитные формы актиномицетов и нокардиоподобных актиномицетов широко распространены в почве, многие из них являются продуцентами антибиотиков.

Микоплазмы - мелкие бактерии (0,15-1 мкм), окруженные только цитоплазматической мембраной, содержащей стеролы. Они относятся к классу Mollicutes. Из-за отсутствия клеточной стенки микоплазмы осмотически чувствительны. Имеют разнообразную форму: кокковидную, нитевидную, колбовидную. Эти формы видны при фазово-контрастной микроскопии чистых культур микоплазм. На плотной питательной среде микоплазмы образуют колонии, напоминающие яичницу-глазунью: центральная непрозрачная часть, погруженная в среду, и просвечивающая периферия в виде круга.

Микоплазмы вызывают у человека атипичную пневмонию (Mycoplasma pneumoniae) и поражения мочеполового тракта

(М. hominis и др.). Микоплазмы вызывают заболевания не только у животных, но и у растений. Достаточно широко распространены и непатогенные представители.

2.3. Строение и классификация грибов

Грибы относятся к домену Eukarya, царству Fungi (Mycota, Mycetes). Недавно грибы и простейшие были разделены на самостоятельные царства: царство Eumycota (настоящие грибы), царство Chromista и царство Protozoa. Некоторые микроорганизмы, ранее считавшиеся грибами или простейшими, были перемещены в новое царство Chromista (хромовики). Грибы - многоклеточные или одноклеточные нефотосинтезирующие (бесхлорофильные) эукариотические микроорганизмы с толстой клеточной стенкой. Они имеют ядро с ядерной оболочкой, цитоплазму с органеллами, цитоплазматическую мембрану и многослойную ригидную клеточную стенку, состоящую из нескольких типов полисахаридов (маннаны, глюканы, целлюлоза, хитин), а также белка, липидов и др. Некоторые грибы образуют капсулу. Цитоплазматическая мембрана содержит гликопротеины, фосфолипиды и эргостеролы (в отличие от холестерина - главного стерола тканей млекопитающих). Большинство грибов - облигатные или факультативные аэробы.

Грибы широко распространены в природе, особенно в почве. Некоторые грибы содействуют производству хлеба, сыра, молочнокислых продуктов и алкоголя. Другие грибы продуцируют антимикробные антибиотики (например, пенициллин) и иммунодепрессивные лекарства (например, циклоспорин). Грибы используют генетики и молекулярные биологи для моделирования различных процессов. Фитопатогенные грибы наносят значительный ущерб сельскому хозяйству, вызывая грибковые болезни злаковых растений и зерна. Инфекции, вызываемые грибами, называются микозами. Различают гифальные и дрожжевые грибы.

Гифальные (плесневые) грибы, или гифомицеты, состоят из тонких нитей толщиной 2-50 мкм, называемых гифами, которые сплетаются в грибницу или мицелий (плесень). Тело гриба называется талломом. Различают демациевые (пигментированные - коричневые или черные) и гиалиновые (непигментированные) гифомицеты. Гифы, врастающие в питательный субстрат, отвечают за питание гриба и называются вегетативными гифами. Гифы, ра-

стущие над поверхностью субстрата, называются воздушными или репродуктивными гифами (отвечают за размножение). Колонии из-за воздушного мицелия имеют пушистый вид.

Различают низшие и высшие грибы: гифы высших грибов разделены перегородками, или септами с отверстиями. Гифы низших грибов не имеют перегородок, представляя собой многоядерные клетки, называемые ценоцитными (от греч. koenos - единый, общий).

Дрожжевые грибы (дрожжи) в основном представлены отдельными овальными клетками диаметром 3-15 мкм, а их колонии, в отличие от гифальных грибов, имеют компактный вид. По типу полового размножения они распределены среди высших грибов - аскомицет и базидиомицет. При бесполом размножении дрожжи образуют почки или делятся. Могут образовывать псевдогифы и ложный мицелий (псевдомицелий) в виде цепочек удлиненных клеток - «сарделек». Грибы, аналогичные дрожжам, но не имеющие полового способа размножения, называют дрожжеподобными. Они размножаются только бесполым способом - почкованием или делением. Понятия «дрожжеподобные грибы» часто идентифицируют с понятием «дрожжи».

Многие грибы обладают диморфизмом - способностью к гифальному (мицелиальному) или дрожжеподобному росту в зависимости от условий культивирования. В инфицированном организме они растут в виде дрожжеподобных клеток (дрожжевая фаза), а на питательных средах образуют гифы и мицелий. Диморфизм связан с температурным фактором: при комнатной температуре образуется мицелий, а при 37 °С (при температуре тела человека) - дрожжеподобные клетки.

Грибы размножаются половым или бесполым способом. Половое размножение грибов происходит с образованием гамет, половых спор и других половых форм. Половые формы называются телеоморфами.

Бесполое размножение грибов происходит с образованием соответствующих форм, называемых анаморфами. Такое размножение происходит почкованием, фрагментацией гиф и бесполыми спорами. Эндогенные споры (спорангиоспоры) созревают внутри округлой структуры - спорангия. Экзогенные споры (конидии) формируются на кончиках плодоносящих гиф, так называемых конидиеносцах.

Различают разнообразые конидии. Артроконидии (артроспоры), или таллоконидии, образуются при равномерном септировании и расчленении гиф, а бластоконидии образуются в результате почкования. Небольшие одноклеточные конидии называются микроконидиями, большие многоклеточные конидии - макроконидиями. К бесполым формам грибов относят также хламидоконидии, или хламидоспоры (толстостенные крупные покоящиеся клетки или комплекс мелких клеток).

Различают совершенные и несовершенные грибы. Совершенные грибы имеют половой способ размножения; к ним относят зигомицеты (Zygomycota), аскомицеты (Ascomycota) и базидиомицеты (Basidiomycota). Несовершенные грибы имеют только бесполый способ размножения; к ним относят формальный условный тип/ группу грибов - дейтеромицеты (Deiteromycota).

Зигомицеты относятся к низшим грибам (мицелий несептированный). Они включают представителей родов Mucor, Rhizopus, Rhizomucor, Absidia, Basidiobolus, Conidiobolus. Распространены в почве и воздухе. Могут вызывать зигомикоз (мукоромикоз) легких, головного мозга и других органов человека.

При бесполом размножении зигомицет на плодоносящей гифе (спорангиеносце) образуется спорангий - шаровидное утолщение с оболочкой, содержащее многочисленные спорангиоспоры (рис. 2.6, 2.7). Половое размножение у зигомицетов происходит с помощью зигоспор.

Аскомицеты (сумчатые грибы) имеют септированный мицелий (кроме одноклеточных дрожжей). Свое название они получили от основного органа плодоношения - сумки, или аска, содержащего 4 или 8 гаплоидных половых спор (аскоспор).

К аскомицетам относятся отдельные представители (телеоморфы) родов Aspergillus и Penicillium. Большинство грибов родов Aspergillus, Penicillium являются анаморфами, т.е. размножаются только беспо-

Рис. 2.6. Грибы рода Mucor (рис. А.С. Быкова)

Рис. 2.7. Грибы рода Rhizopus. Развитие спорангия, спорангиоспор и ризоидов

лым путем с помощью бесполых спор - конидий (рис. 2.8, 2.9) и должны быть отнесены по этому признаку к несовершенным грибам. У грибов рода Aspergillus на концах плодоносящих гиф, конидиеносцах, имеются утолщения - стеригмы, фиалиды, на которых образуются цепочки конидий («леечная плесень»).

У грибов рода Penicillium (кистевик) плодоносящая гифа напоминает кисточку, так как из нее (на конидиеносце) образуются утолщения, разветвляющиеся на более мелкие структуры - стеригмы, фиалиды, на которых находятся цепочки конидий. Некоторые виды аспергилл могут вызывать аспергиллезы и афлатоксикозы, пенициллы могут вызывать пенициллиозы.

Представителями аскомицетов являются телеоморфы родов Trichophyton, Microsporum, Histoplasma, Blastomyces, а также дрож-

Рис. 2.8. Грибы рода Penicillium. Цепочки конидий отходят от фиалид

Рис. 2.9. Грибы рода Aspergillus fumigatus. От фиалид отходят цепочки конидий

Базидиомицеты включают шляпочные грибы. Они имеют септированный мицелий и образуют половые споры - базидиоспоры путем отшнуровывания от базидия - концевой клетки мицелия, гомологичной аску. К базидиомицетам относятся некоторые дрожжи, например телеоморфы Cryptococcus neoformans.

Дейтеромицеты являются несовершенными грибами (Fungi imperfecti, анаморфные грибы, конидиальные грибы). Это условный, формальный таксон грибов, объединяющий грибы, не имеющие полового размножения. Недавно вместо термина «дейтеромицеты» предложен термин «митоспоровые грибы» - грибы, размножающиеся неполовыми спорами, т.е. путем митоза. При установлении факта полового размножения несовершенных грибов их переносят в один из известных типов - Ascomycota или Basidiomycota, присваивая название телеоморфной формы. Дейтеромицеты имеют септированный мицелий, размножаются только путем бесполого формирования конидий. К дейтеромицетам относятся несовершенные дрожжи (дрожжеподобные грибы), например некоторые грибы рода Candida, поражающие кожу, слизистые оболочки и внутренние органы (кандидоз). Они имеют овальную форму, диаметр 2-5 мкм, делятся почкованием, образуют псевдогифы (псевдомицелий) в виде цепочек из удлиненных клеток, иногда образуют гифы. Для Candida albicans характерно образование хламидоспор (рис. 2.10). К дейтеромицетам относят также другие грибы, не имеющие полового способа размножения, относящиеся к родам Epidermophyton, Coccidioides, Paracoccidioides, Sporothrix, Aspergillus, Phialophora, Fonsecaeа, Exophiala, Cladophialophora, Bipolaris, Exerohilum, Wangiella, Alrernaria и др.

Рис. 2.10. Грибы рода Candida albicans (рис. А.С. Быкова)

2.4. Строение и классификация простейших

Простейшие относятся к домену Eukarya, царству животных (Animalia), подцарству Protozoa. Недавно предложено выделить простейшие в ранг царства Protozoa.

Клетка простейших окружена мембраной (пелликулой) - аналогом цитоплазматической мембраны клеток животных. Она имеет ядро с ядерной оболочкой и ядрышком, цитоплазму, содержащую эндоплазматический ретикулум, митохондрии, лизосомы и рибосомы. Размеры простейших колеблются от 2 до 100 мкм. При окраске по Романовскому-Гимзе ядро простейших имеет красный, а цитоплазма - голубой цвет. Простейшие передвигаются с помощью жгутиков, ресничек или псевдоподий, некоторые из них имеют пищеварительные и сократительные (выделительные) вакуоли. Они могут питаться в результате фагоцитоза или образования особых структур. По типу питания они разделяются на гетеротрофы и аутотрофы. Многие простейшие (дизентерийная амеба, лямблии, трихомонады, лейшмании, балантидии) могут расти на питательных средах, содержащих нативные белки и аминокислоты. Для их культивирования используют также культуры клеток, куриные эмбрионы и лабораторных животных.

Простейшие размножаются бесполым путем - двойным или множественным (шизогония) делением, а некоторые и половым путем (спорогония). Одни простейшие размножаются внеклеточно (лямблии), а другие - внутриклеточно (плазмодии, токсоплазма, лейшмании). Жизненный цикл простейших характеризуется стадийностью - образованием стадии трофозоита и стадии цисты. Цисты - покоящиеся стадии, устойчивые к изменению температуры и влажности. Кислотоустойчивостью отличаются цисты Sarcocystis, Cryptosporidium и Isospora.

Ранее простейшие, вызывающие заболевания у человека, были представлены 4 типами 1 (Sarcomastigophora, Apicomplexa, Ciliophora, Microspora). Эти типы недавно реклассифицированы на большее количество, появились новые царства - Protozoa и Chromista (табл. 2.2). В новое царство Chromista (хромовики) вошли некоторые простейшие и грибы (бластоцисты, оомицеты и Rhinosporidium seeberi). Царство Protozoa включает амебы, жгутиконосцы, споровики и реснитчатые. Они подразделены на различные типы, среди которых различают амебы, жгутиконосцы, споровики и реснитчатые.

Таблица 2.2. Представители царств Protozoa и Chromista, имеющие медицинское значение

1 Тип Sarcomastigophora состоял из подтипов Sarcodina и Mastigophora. Подтип Sarcodina (саркодовые) включал дизентерийную амебу, а подтип Mastigophora (жгутиконосцы) - трипаносомы, лейшмании, лямблию и трихомонады. Тип Apicomplexa включал класс Sporozoa (споровики), куда входили плазмодии малярии, токсоплазма, криптоспоридии и др. Тип Ciliophora включает балантидии, а тип Microspora - микроспоридии.

Окончание табл. 2.2

К амебам относятся возбудитель амебиаза человека - амебной дизентерии (Entamoeba histolytica), свободно живущие и непатогенные амебы (кишечная амеба и др.). Амебы размножаются бинарно бесполым путем. Их жизненный цикл состоит из стадии трофозоита (растущая, подвижная клетка, малоустойчивая) и стадии цисты. Трофозоиты передвигаются с помощью псевдоподий, которые захватывают и погружают в цитоплазму питательные вещества. Из

трофозоита образуется циста, устойчивая к внешним факторам. Попав в кишечник, она превращается в трофозоит.

Жгутиконосцы характеризуются наличием жгутиков: у лейшманий один жгутик, у трихомонад 4 свободных жгутика и один жгутик, соединенный с короткой ундулирующей мембраной. Ими являются:

Жгутиконосцы крови и тканей (лейшмании - возбудители лейшманиозов; трипаносомы - возбудители сонной болезни и болезни Шагаса);

Жгутиконосцы кишечника (лямблия - возбудитель лямблиоза);

Жгутиконосцы мочеполового тракта (трихомонада влагалищная - возбудитель трихомоноза).

Реснитчатые представлены балантидиями, которые поражают толстую кишку человека (балантидиазная дизентерия). Балантидии имеют стадию трофозоита и цисты. Трофозоит подвижен, имеет многочисленные реснички, более тонкие и короткие, чем жгутики.

2.5. Строение и классификация вирусов

Вирусы - мельчайшие микробы, относящиеся к царству Virae (от лат. virus - яд). Они не имеют клеточного строения и состоят

Структуру вирусов из-за их малых размеров изучают с помощью электронной микроскопии как вирионов, так и их ультратонких срезов. Размеры вирусов (вирионов) определяют напрямую с помощью электронной микроскопии или косвенно методом ультрафильтрации через фильтры с известным диаметром пор, методом ультрацентрифугирования. Размер вирусов колеблется от 15 до 400 нм (1 нм равен 1/1000 мкм): к маленьким вирусам, размер которых сходен с размером рибосом, относят парвовирусы и вирус полиомиелита, а к наиболее крупным - вирус натуральной оспы (350 нм). Вирусы отличаются по форме вирионов, которые имеют вид палочек (вирус табачной мозаики), пули (вирус бешенства), сферы (вирусы полиомиелита, ВИЧ), нити (филовирусы), сперматозоида (многие бактериофаги).

Вирусы поражают воображение своим разнообразием структуры и свойств. В отличие от клеточных геномов, которые содержат однородную двунитевую ДНК, вирусные геномы чрезвычайно разнообразны. Различают ДНК- и РНК-содержащие вирусы, которые гаплоидны, т.е. имеют один набор генов. Диплоидный геном имеют только ретровирусы. Геном вирусов содержит от 6 до 200 генов и представлен различными видами нуклеиновых кислот: двунитевыми, однонитевыми, линейными, кольцевыми, фрагментированными.

Среди однонитевых РНК-содержащих вирусов различают геномные плюс-нить РНК и минус-нить РНК (полярность РНК). Плюс-нить (позитивная нить) РНК этих вирусов, кроме геномной (наследственной) функции, выполняет функцию информационной, или матричной РНК (иРНК, или мРНК); она является матрицей для белкового синтеза на рибосомах инфицированной клетки. Плюс-нить РНК является инфекционной: при введении в чувствительные клетки она способна вызвать инфекционный про-

цесс. Минус-нить (негативная нить) РНК-содержащих вирусов выполняет только наследственную функцию; для синтеза белка на минус-нити РНК синтезируется комплементарная ей нить. У некоторых вирусов РНК-геном является амбиполярным (ambisense от греч. амби - с обеих сторон, двойная комплементарность), т.е. содержит плюс- и минус-сегменты РНК.

Различают простые вирусы (например, вирус гепатита А) и сложные вирусы (например, вирусы гриппа, герпеса, коронавирусы).

Простые, или безоболочечные, вирусы имеют только нуклеиновую кислоту, связанную с белковой структурой, называемой капсидом (от лат. capsa - футляр). Протеины, связанные с нуклеиновой кислотой, известны как нуклеопротеины, а ассоциация вирусных протеинов капсида вируса с вирусной нуклеиновой кислотой названа нуклеокапсидом. Некоторые простые вирусы могут формировать кристаллы (например, вирус ящура).

Капсид включает повторяющиеся морфологические субъединицы - капсомеры, скомпонованные из нескольких полипептидов. Нуклеиновая кислота вириона, связываясь с капсидом, образует нуклеокапсид. Капсид защищает нуклеиновую кислоту от деградации. У простых вирусов капсид участвует в прикреплении (адсорбции) к клетке хозяина. Простые вирусы выходят из клетки в результате ее разрушения (лизиса).

Сложные, или оболочечные, вирусы (рис. 2.11), кроме капсида, имеют мембранную двойную липопротеиновую оболочку (синоним: суперкапсид, или пеплос), которая приобретается путем почкования вириона через мембрану клетки, например через плазматическую мембрану, мембрану ядра или мембрану эндоплазматического ретикулума. На оболочке вируса расположены гликопротеиновые шипы,

или шипики, пепломеры. Разрушение оболочки эфиром и другими растворителями инактивирует сложные вирусы. Под оболочкой некоторых вирусов находится матриксный белок (М-белок).

Вирионы имеют спиральный, икосаэдрический (кубический) или сложный тип симметрии капсида (нуклеокапсида). Спиральный тип симметрии обусловлен винтообразной структурой нуклеокапсида (например, у вирусов гриппа, коронавирусов): капсомеры уложены по спирали вместе с нуклеиновой кислотой. Икосаэдрический тип симметрии обусловлен образованием изометрически полого тела из капсида, содержащего вирусную нуклеиновую кислоту (например, у вируса герпеса).

Капсид и оболочка (суперкапсид) защищают вирионы от воздействия окружающей среды, обусловливают избирательное взаимодействие (адсорбцию) своими рецепторными белками с опреде-

Рис. 2.11. Строение оболочечных вирусов с икосаэдрическим (а) и спиральным (б) капсидом

ленными клетками, а также антигенные и иммуногенные свойства вирионов.

Внутренние структуры вирусов называют сердцевиной. У аденовирусов сердцевина состоит из гистоноподобных белков, связанных с ДНК, у реовирусов - из белков внутреннего капсида.

Лауреат Нобелевской премии Д. Балтимор предложил систему балтиморской классификации, основанной на механизме синтеза мРНК. Эта классификация размещает вирусы в 7 группах (табл. 2.3). Международный комитет на таксономии вирусов (ICTV) принял универсальную систему классификации, которая использует такие таксономические категории, как семейство (название оканчивается на viridae), подсемейство (название оканчивается на virinae), род (название оканчивается на virus). Вид вируса не получил биноминального названия, как у бактерий. Вирусы классифицируют по типу нуклеиновой кислоты (ДНК или РНК), ее структуре и количеству нитей. Они имеют двунитевые или однонитевые нуклеиновые кислоты; позитивную (+), негативную (-) полярность нуклеиновой кислоты или смешанную полярность нуклеиновой кислоты, амбиполярную (+, -); линейную или циркулярную нуклеиновую кислоту; фрагментированную или нефрагментированную нуклеиновую кислоту. Учитывают также размер и морфологию вирионов, количество капсомеров и тип симметрии нуклеокапсида, наличие оболочки (суперкапсида), чувствительность к эфиру и дезоксихолату, место размножения в клетке, антигенные свойства и др.

Таблица 2.3. Основные вирусы, имеющие медицинское значение

Продолжение табл. 2.3

Окончание табл. 2.3

Вирусы поражают животных, бактерии, грибы и растения. Являясь основными возбудителями инфекционных заболеваний человека, вирусы также участвуют в процессах канцерогенеза, могут передаваться различными путями, в том числе через плаценту (вирус краснухи, цитомегаловирус и др.), поражая плод человека. Они могут приводить и к постинфекционным осложнениям - развитию миокардитов, панкреатитов, иммунодефицитов и др.

К неклеточным формам жизни, кроме вирусов, относят прионы и вироиды. Вироиды - небольшие молекулы кольцевой, суперспирализованной РНК, не содержащие белок и вызывающие заболевания растений. Патологические прионы - инфекционные белковые частицы, вызывающие особые конформационные болезни в результате изменения структуры нормального клеточного прионового протеина (PrP c ), который имеется в организме животных и человека. PrP с выполняет регуляторные функции. Его кодирует нормальный прионовый ген (PrP-ген), расположенный в коротком плече 20-й хромосомы человека. Прионные болезни протекают по типу трансмиссивных губкообразных энцефалопатий (болезнь Крейтцфельда-Якоба, куру и др.). При этом прионный протеин приобретает другую, инфекционную форму, обозначаемую как PrP sc (sc от scrapie - скрепи - прионная инфекция овец и коз). Этот инфекционный прионный протеин имеет вид фибрилл и отличается от нормального прионного протеина третичной или четвертичной структурой.

Задания для самоподготовки (самоконтроля)

А. Отметьте микробы, являющиеся прокариотами:

2. Вирусы.

3. Бактерии.

4. Прионы.

Б. Отметьте отличительные особенности прокариотической клетки:

1. Рибосомы 70S.

2. Наличие пептидогликана в клеточной стенке.

3. Наличие митохондрий.

4. Диплоидный набор генов.

В. Отметьте составные компоненты пептидогликана:

1. Тейхоевые кислоты.

2. N-ацетилглюкозоамин.

3. Липополисарид.

4. Тетрапептид.

Г. Отметьте особенности строения клеточной стенки грамотрицательных бактерий:

1. Мезодиаминопимелиновая кислота.

2. Тейхоевые кислоты.

4. Белки-порины.

Д. Назовите функции спор у бактерий:

1. Сохранение вида.

2. Жароустойчивость.

3. Расселение субстрата.

4. Размножение.

1. Риккетсии.

2. Актиномицеты.

3. Спирохеты.

4. Хламидии.

Ж. Назовите особенности актиномицет:

1. Имеют термолабильные споры.

2. Грамположительные бактерии.

3. Отсутствует клеточная стенка.

4. Имеют извитую форму.

З. Назовите особенности спирохет:

1. Грамотрицательные бактерии.

2. Имеют двигательный фибриллярный аппарат.

3. Имеют извитую форму.

И. Назовите простейшие, обладающие апикальным комплексом, позволяющим проникать внутрь клетки:

1. Малярийный плазмодий.

3. Токсоплазма.

4. Криптоспоридии.

К. Назовите отличительную особенность сложноорганизованных вирусов:

1. Два типа нуклеиновой кислоты.

2. Наличие липидной оболочки.

3. Двойной капсид.

4. Наличие неструктурных белков. Л. Отметьте высшие грибы:

1. Mucor.

2. Candida.

3. Penicillium.

4. Aspergillus.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

МОРФОЛОГИЯ И КЛАССИФИКАЦИЯ МИКРООРГАНИЗМОВ

Морфология микроорганизмов изучает их внешний вид, форму и особенности строения клеток, способность к движению, спорообразованию, а также способы размножения.

Все микроорганизмы были выделены в отдельное царство «Протиста». С конца XIX в, стали накапливаться данные о различии в строении клеток микроорганизмов, входящих в группу «Протиста». Эту группу организмов разделили на высшие и низшие протисты. Такое деление основано на типе клеточной организации, отражающей уровень эволюции.

Высшие протисты имеют эукариотное строение клетки, низшие - прокариотное. Прокариоты отличаются от эукариот тем, что у них в клетке нет обособленного ядра, отделенного от цитоплазмы собственной мембраной. Второе отличие прокариот - отсутствие цитоплазматических органелл, окруженных элементарной мембраной;

У эукариотных клеток имеется хорошо развитая система клеточных мембран (эндоплазматическая сеть, аппарат Гольджи, митохондрии). Третья особенность прокариотной клетки состоит в том, что рибосомы имеют малые размеры и рассеяны в цитоплазме; в эукариотной клетке рибосомы крупнее и расположены преимущественно на поверхности мембран эндоплазматической сети.

В 1969 г. была предложена схема разделения живых организмов на пять царств. Эта схема классификации (разделения) живых организмов отражает три основных уровня клеточной организации живых систем:

Монера - прокариотные организмы;

Протиста - микроскопические, в большинстве одноклеточные формы жизни, возникшие в результате качественного скачка в процессе эволюции, приведшего к появлению эукариотных клеток; Эукариоты - многоклеточные, включающие три царства: растения, животные и грибы, различающиеся по способу питания. Отдельно существует шестое царство - вирусы - неклеточные формы жизни.

бактерия клетка дрожжи гриб

БАКТЕРИИ

Общая характеристика

Бактерии - это обширная группа микроорганизмов (около 1600 видов), большинство из которых одноклеточные.

Форма и размеры бактерий. Основными формами бактерий являются шаровидная, палочковидная и извитая (рис. 2).

Шаровидные бактерии (рис. 2, а) - кокки - имеют обычно форму шара, встречаются уплощенные, слабо овальной или бобовидной формы. Кокки могут быть в виде

· одиночных клеток - микрококки или соединенных в различных сочетаниях:

· попарно - диплококки,

· по четыре клетки - тетракокки,

· в виде более или менее длинных цепочек - стрептококки,

· в виде скоплений кубической формы (в виде пакетов) из восьми клеток, расположенных в два яруса один над другим,- сардины.

Встречаются скопления неправильной формы, напоминающие грозди винограда,- стафилококки.

Палочковидные бактерии (рис. 2, б) могут быть одиночными или соединенными попарно - диплобактерии, цепочками по три-четыре и более клеток - стрептобактерии.

Извитые или изогнутые бактерии (рис. 2, в) различаются по длине, толщине и степени изогнутости. Палочки , слегка изогнутые в виде запятой, называют вибрионами, палочки с одним или несколькими завитками в виде штопора - спириллами, а тонкие палочки с многочисленными завитками - спирохетами.

Размеры бактерий очень малы: от десятых долей микрометра 1 (мкм) до нескольких микрометров. В среднем диаметр тела большинства бактерий 0,5-1 мкм, а средняя длина палочковидных бактерий 2-5 мкм. Встречаются бактерии, размеры которых значительно превышают среднюю величину. Существуют и такие, величина которых находится на грани видимости в обычные оптические микроскопы (0,1 -0,2 мкм). Например, длина клетки спирохеты может достигать 500 мкм, а самые мелкие из известных бактерий - микоплазмы - имеют клетки длиной 0,15-0,2 мкм.

Масса бактериальной клетки очень мала, приблизительно 4 · 10 -13 г.

Строение бактериальной клетки. Клетка прокариотных организмов, к которым относят бактерии, обладает принципиальными особенностями ультраструктуры. На рис. 3 представлена схема строения бактериальной клетки.

Клеточная стенка (оболочка) - важный и обязательный структурный элемент большинства бактерий (рис. 3, 2). На долю клеточной стенки приходится от 5 до 20 % сухих веществ клетки. Она придает клетке определенную форму.

По методу окраски, предложенному Грамом, бактерии делят на две группы: грамположительные и грамотрицательные . Грамположительные клетки удерживают краску, а грамотрицательные клетки не удерживают. Установлено, что это обусловлено различиями в химическом составе и ультраструктуре их клеточных стенок.

Рис. 2. Формы бактерий:

а - шаровидные: / - микрококки; 2 - стрептококки; 3 - диплококки и тетракокки; 4 - стафилококки; 5 - сарцины; б - палочковидные: 6 - палочки без спор; 7 - палочки со спорами; в - извитые: 8 - вибрионы; 9 - спириллы; 10 - спирохеты; г - новые формы: // - тороиды; 12 - бактерии, образующие простеки; 13 - бактерии червеобразной формы; 14 - бактерии в форме шестиугольной звезды

Рис. 3. Схема строения бактериальной клетки:

1 - капсула; 2 - клеточная стенка; 3 - цитоплазматическая мембрана; 4 - цитоплазма; 5 - мезосомы; 6 - рибосомы; 7 - нуклеоид; 8 - внутрицитоплазматические мембранные образования; 9 - жировые капли; 10 - полисахаридные гранулы; 11 - гранулы полифосфата; 12 - включения серы; 13 - жгутики; 14 - базальное тельце

Клеточная стенка бактерий часто бывает покрыта слизью. Слизистый слой может быть тонким, едва различимым, но может быть и значительным, образующим капсулу (рис. 3.1). При быстром размножении в жидких субстратах слизеобразующие бактерии могут превратить их в сплошную слизистую массу. Возбудителем этого процесса является бактерия лейконосток (Leuconostoc mesen-teroides). За короткое время сахарный сироп может превратиться в тягучую слизистую массу. Ослизнению подвергаются мясо, колбасы, творог; наблюдается тягучесть молока, рассолов, квашеных овощей, пива, вина.

Капсула защищает клетку от механических повреждений и высыхания, создает дополнительный осмотический барьер,.Иногда она является источником запасных питательных веществ.

Цитоплазматическая мембрана отделяет от клеточной стенки содержимое клетки. Это обязательная структура любой клетки..

Цитоплазма бактериальной. клетки представляет собой полужидкую, вязкую, коллоидную систему (рис. 3, 4). Цитоплазма неоднородна; исследования показали, что местами она пронизана мембранными структурами - мезосомами, которые произошли от цитоплазматической мембраны и сохранили с ней связь.

Мезосомы (рис. 3, 5) выполняют различные функции, в них и в связанной с ними цитоплазматической мембране расположены ферменты, участвующие в энергетических процессах - в снабжении клетки энергией.

В цитоплазме содержатся рибосомы, ядерный аппарат и различные включения.

Рибосомы рассеяны в цитоплазме в виде мелких гранул размером 20-30 нм; рибосомы состоят примерно наполовину из РНК и белка. Рибосомы ответственны за синтез белка клетки. В бактериальной клетке их может быть 5-50 тыс. (рис. 3, 6).

Ядерное образование бактериальной клетки называется нуклеоидом (рис. 3, 7) в отличие от названия «я д с о» у эукариотной клетки.

Цитоплазматические включения бактериальной клетки разнообразны, в основном - это запасные питательные вещества, которые откладываются в клетке, когда они развиваются в условиях избытка питательных веществ в среде, и потребляются, когда клетки попадают в условия голодания.

Подвижность бактерий. Шаровидные бактерии, как правило, неподвижны. Палочковидные бактерии бывают как подвижными, так и неподвижными. Изогнутые и спиралевидные бактерии подвижны. Движение бактерий осуществляется с помощью жгутиков. Жгутики - это тонкие, спирально закрученные нити белковой природы, которые могут осуществлять вращательные движения. Длина жгутиков различна, а толщина так мала (10- 20 нм), что в световой микроскоп их можно увидеть только после специальной обработки клетки. Наличие жгутиков, их расположение являются постоянными для вида признаками и имеют диагностическое значение.

Размножение бактерий. Для прокариотных клеток характерно простое деление клетки на две части. Деление клетки начинается, как правило, спустя некоторое время после деления нуклеоида. Характерной особенностью размножения бактерий является быстрота протекания процесса. Скорость деления зависит от вида бактерий и условий культивирования: некоторые виды делятся через каждые 15-20 мин, другие - через 5-10 ч. При таком быстром делении число клеток бактерий за сутки достигает огромного количества. Это часто наблюдается на пищевых продуктах: быстрое скисание молока за счет развития молочнокислых бактерий, быстрая порча мяса и рыбы за счет развития гнилостных бактерий и т. д.

Спорообразование. Споры у бактерий образуются обычно при неблагоприятных условиях развития: при недостатке питательных веществ, изменении температуры, рН, при накоплении продуктов обмена выше определенного уровня. Способностью образовывать споры обладают почти исключительно палочковидные бактерии. В каждой бактериальной клетке образуется" только одна спора (эндоспора).

Спорообразованию предшествует перестройка генетического аппарата клетки, изменяется морфология нуклеоида. В клетке прекращается синтез ДНК. Ядерная ДНК вытягивается в виде нити, затем концентрируется у одного из полюсов клетки. Эта часть клетки называется спорогенной зоной. Затем в спорогенной зоне происходит уплотнение цитоплазмы, этот участок обособляется от остального клеточного содержимого перегородкой (септой)

ВИРУСЫ И ФАГИ

Вирусы. Это особая группа организмов меньших размеров и более простой организации, чем бактерии. Вирусы не имеют клеточной структуры (отсутствуют ядро, цитоплазма), величина их измеряется нанометрами. Вирусы открыты Д. И. Ивановским в 1892 г. при изучении мозаичной болезни листьев табака, которая причиняла большой ущерб табачным плантациям Крыма. Открытие Д. И. Ивановского заложило основу новой науки - вирусологии.

Некоторые из вирусов состоят только из белка и одной нуклеиновой кислоты - ДНК или РНК. Вирусная частица называется вирионом. Нуклеиновая кислота (в виде спирали) находится внутри вириона, снаружи он покрыт белковой оболочкой (капсидом), состоящей из отдельных морфологических субъединиц - капсомеров (рис. 6, б).

Вирусы обладают разной устойчивостью к внешним воздействиям. Многие инактивируются при 60 °С в течение 30 мин, другие выдерживают температуру 90 °С до 10 мин. Вирусы довольно легко переносят высушивание и низкие температуры, но малоустойчивы ко многим антисептикам, ультрафиолетовым лучам, радиоактивным излучениям.

Фаги. Это вирусы микроорганизмов, вызывающие гибель - распад (лизис) их клеток. Вирусы бактерий называют бактериофагами или фагами, вирусы актиномицетов - актинофагами, вирусы грибов - микофагами, вирусы сине-зеленых водорослей (цианобактерий) - цианофагами.

Фаги широко распространены в природе. Многие из них обладают специфичностью - могут воздействовать на определенный вид или группу родственных видов микроорганизмов.

Фаги применяют в медицине для лечения и профилактики некоторых заболеваний, например дизентерии, холеры.

ГРИБЫ (MYCOTA ИЛИ FUNGI )

Общая характеристика

Грибы - обширная и разнообразная группа растительных организмов, многие из которых называют плесенями.

В природе грибы обитают на разных субстратах: в воде, почве, на растениях и животных.

Многие грибы употребляют в пищу, используют в промышленных производствах для получения органических кислот, витаминов, ферментов, антибиотиков.

Многочисленны грибы, развивающиеся на пищевых продуктах, промышленных материалах и изделиях, вызывающие их порчу и разрушение. Некоторые из них способны вырабатывать токсические для человека вещества - микотоксины.

Существуют грибы, которые поражают культурные растения в процессе их вегетации, нанося большой урон сельскому хозяйству. Имеются грибы, патогенные для человека и животных. Строение тела гриба. Вегетативное тело большинства грибов представляет собой грибницу, или мицелий, состоящий из ветвящихся нитей - гиф.

Тело некоторых грибов представляет собой одиночные округлые или удлиненные клетки (дрожжи). Гифы отдельных грибов могут плотно переплетаться и даже срастаться между собой. У некоторых грибов гифы соединяются параллельно в тяжи, достигающие иногда нескольких метров в длину, по ним притекает вода и питательные вещества.

Из плотного сплетения гиф состоят так называемые плодовые тела грибов, в которых находятся органы размножения.

Грибы имеют эукариотный тип клетки.

Размножение грибов. Отличительной особенностью грибов является большое разнообразие у них способов и органов размножения. При этом гриб может настолько менять свою внешнюю форму, что в каждой из них его рассматривают как самостоятельный вид.

Грибы размножаются вегетативным, бесполым и половым путями.

Вегетативное размножение происходит без образования каких-либо специализированных органов: частями мицелия или отдельными клетками - о и д и я м и (артроспорами), образующимися в результате расчленения гиф (рис. 10, а), которые на питательном ^^^^^^^^^ субстрате разрастаются в грибницу. Размножение происходит и образующимися на гифах хламидоспорами - толстостенными клетками, устойчивыми к неблагоприятным условиям (рис. 9, а).

При бесполом и половом размножении образуются специализированные клетки - споры, с помощью которых и осуществляется размножение.

При бесполом способе размножения споры образуются на особых гифах воздушного мицелия, внешне отличающихся от других гиф.

У одних грибов споры образуются экзогенно (открыто) - на вершине гиф, снаружи их. Такие споры называют конидиями, а гифы, несущие их, - конидиеносцами (рис. 10,6).

Конидиеносцы развиваются на мицелии поодиночке или группами. При групповом развитии конидиеносцы одних грибов объединяются в пучки (коремии), у других - они располагаются тесным слоем в особых кувшиновидных (пикниды) или блюдцеобразных (ложе) образованиях из плотного сплетения гиф (рис. 11).

Конидии образуются непосредственно на конидиеносце или на специальных клетках, расположенных на его вершине. Эти клетки обычно имеют форму бутылочек и называются стеригмами или фиалидами. Конидии располагаются на конидиеносцах (или на стеригмах) поодиночке, группами, цепочками и т. д.

У других грибов споры образуются эндогенно - внутри особых клеток, развивающихся на концах гиф. Эти клетки - вместилища спор - называют спорангиями, находящиеся в них споры - спорангиоспорами, а гифы, несущие спорангии со спорами,- спор ангиеносц а м и (рис. 10, в). От несущей гифы спорангии отделены перегородкой (колонкой), врастающей внутрь спорангия.

Рис. 9. Хламидоспоры и склероции грибов:

а - хламидоспоры; б - склероции спорыньи

Рис. 10. Органы бесполого размножения грибов:

а - оидии; б - конидиеносец (1) со стеригмами (2) и конидиями (3); в - спорангиеносец со спорангием (4) и спорангиоспорами (5)

Рис. 11. Типы конидиального спороношения:

1 - коремия; 2 - пикнида; 3 - ложе

У некоторых грибов в спорангиях образуются подвижные споры, снабженные жгутиками,- зооспоры.

Спорангиоспоры и конидии бывают различной формы, размера и окраски, благодаря чему грибы в стадии спороношения имеют вид окрашенных налетов. Созревшие конидии осыпаются. При созревании спорангиоспор спорангии лопаются и из них высыпаются споры. Конидии и спорангиоспоры пассивно разносятся потоками воздуха на большие расстояния. Попав в благоприятные условия, споры прорастают в гифы. Спорангиеносцы, и особенно конидиеносцы грибов, имеют разнообразное строение и внешний вид, типичные для отдельных представителей.

При половом размножении грибов спорообразованию предшествует половой процесс - слияние половых клеток с последующим объединением их ядер. В результате образуются специализированные органы размножения. Развитие этих органов, формы полового процесса у грибов многообразны.

У грибов с клеточным мицелием в качестве органа полового размножения образуются базидии со спорами или сумки со спорами.

Базидия представляет собой мешковидно вытянутую клетку, на которой имеются выросты - стеригмы (обычно четыре), на каждом из которых находится по одной споре. Эти споры называются базидиоспорами (рис. 12,а). Базидии бывают и многоклеточными (рис. 12,2).

Сумка (аскус)" имеет вид цилиндрической клетки, внутри которой находятся споры (чаще восемь), называемые а с к о -спорами (рис. 12,6). Аскоспоры бывают различной формы, бесцветны или окрашены.

Базидии и сумки иногда располагаются на мицелии поодиночке, но большей частью они развиваются группами или слоями в особых образованиях из плотно переплетенных гиф - плодовых телах. По форме, строению и окраске плодовые тела очень разнообразны. Такими плодовыми телами являются, например, шляпка с ножкой белого гриба, сыроежки, опенка и др. У грибов с неклеточным мицелием в результате полового процесса образуется одна спора - зигоспора, или ооспора (рис. 12, в).

Органы полового спороношения:

а - базидии с базидиоспорами: / - одноклеточная базидия; 2 - многоклеточная базидия; б -сумка (аскус) с аскоспора-ми; в - зигоспора

При развитии зигоспоры происходит слияние двух внешне неразличимых клеток мицелия, а при развитии ооспоры - слияние двух различных половых клеток.

Ооспоры и зигоспоры имеют толстую оболочку, содержат много запасных питательных веществ и способны долго сохраняться в неблагоприятных условиях.

Большинство грибов может размножаться бесполым и половым путем; такие грибы называют совершенными. Некоторые грибы не способны к половому размножению; их называют несовершенными. Особенности способов размножения и строения органов размножения используют при распознавании грибов; эти особенности лежат и в основе их классификации.

Систематика грибов

Основными классами грибов являются:

хитридиомицеты

оомицеты

зигомицеты

аскомицеты

базидиомицеты

дейтеромицеты (несовершенные грибы).

Хитридиомицеты (Chitridiomycetes ). Мицелий у них развит слабо или отсутствует. Размножаются хитридиомицеты главным образом бесполым путем посредством подвижных спор с одним жгутиком - зооспор, развивающихся внутри зооспорангиев.

Оомицеты (Oomycetes ) . Мицелий у них хорошо развит, неклеточный, многоядерный. Бесполое размножение происходит с помощью развивающихся в зооспорангиях зооспор с двумя жгутиками. При половом процессе образуются ооспоры.

Наибольшее значение имеют фитофтора и плазмопара.

Фитофтора (Phytophthora infestans), или картофельный гриб, поражает клубни и ботву картофеля На коротких разветвленных спорангиеносцах развиваются яйцевидные или лимоновидные спорангии.

Во влажной среде в них образуется несколько подвижных зооспор, которые затем прорастают в гифы. В сухой среде зооспоры не образуются, спорангий непосредственно прорастает в гифу. Фитофтора поражает также помидоры и баклажаны.

Зигомицеты (Zygomycetes ) . Мицелий у них хорошо развит, неклеточный. Бесполое размножение происходит с помощью неподвижных спорангиоспор; половое размножение - зигоспорами. К этому классу относят мукоровые (Mucoraceae) грибы, широко распространенные в природе.

Многие мукоровые грибы являются возбудителями порчи различных пищевых продуктов. Они развиваются на продуктах в виде пушистой белой, серой массы. Наибольшее значение из мукоровых грибов мукор и ризопус.

Грибы рода ризопус (Rhizopus ) образуют неветвящиеся, окрашенные в темно-бурый цвет спорангиеносцы, растущие пучками (кустиками). У основания последних имеются корневидные образования - ризоиды (рис. 14, б), с помощью которых гриб прикрепляется к субстрату. Спорангии крупные с темноокрашенными спорами выглядят в виде черных «головок» на спорангиеносцах, за что ризопус получил название «головчатая плесень». Некоторые мукоровые грибы имеют положительное значение благодаря способности продуцировать органические кислоты, ферменты, сбраживать сахар в этиловый спирт.

Аскомицеты (Ascomycetes ) . Аскомицеты, или сумчатые грибы, различны по строению и свойствам.

Мицелий у большинства хорошо развит, клеточный, но к аскомицетам относятся и не имеющие мицелия организмы, представленные одиночными почкующимися клетками. Все они имеют, однако, общее происхождение и ряд общих черт в строении.

Бесполое размножение мицелиальных аскомицетов - с помощью конидий. Конидиальное спороношение разнообразно. Конидиеносцы образуются на мицелии одиночно или группами, образуя коремии, пикниды, ложе (см. с. 27). При половом процессе образуются аскоспоры в сумках (асках). Сумки развиваются у многих грибов в плодовых телах разнообразной формы и строения, характерных для отдельных представителей аскомицетов. Некоторые сумчатые грибы не имеют плодовых тел, и сумки у них развиваются непосредственно на мицелии. Грибы, образующие плодовые тела, называют плодосумчатыми, а грибы, не образующие такие тела,- голосумчатыми.

Некоторые используются в промышленности как продуценты биологически активных веществ (ферментов, витаминов, антибиотиков, алкалоидов).

Важнейшими представителями немицелиальных голосумчатых грибов являются дрожжи (см. с. 38).

В группу плодосумчатых включены некоторые виды широко распространенных грибов родов аспергиллус и пенициллиум, способные к сумчатому спороношению. Плодовые тела у них в виде мелких шариков, образованных из плотно переплетенных гиф. Внутри этих шаровидных тел находятся сумки со спорами (см. рис. 15, в,г). Большинство видов аспергиллов и пенициллов встречаются только в конидиальной стадии и относятся к классу несовершенных грибов (см. с. 36).

Грибы рода аспергиллус (Aspergillus) имеют одноклеточные, неразветвленные конидиеносцы. У грибов рода пенициллиум (Penicillium) конидиеносцы многоклеточные, ветвящиеся. Аспергилловые и пеницилловые грибы являются распространенными возбудителями порчи (плесневения) пищевых продуктов, промышленных изделий и материалов. Некоторые представители используются в промышленности. Asp. niger, например, применяют в производстве лимонной кислоты; Asp. oryzae и Asp. awamori используют для получения ферментных препаратов.

Отдельные виды Penicillium применяют в производстве лечебного препарата пенициллина. Pen. roqueforti играет важную роль в созревании сыра Рокфора, Pen. camemberti-в производстве сыра Камамбера.

Базидиомицеты (Basidiomycetes ). Это высшие грибы с клеточным мицелием, у некоторых мицелий многолетний. Бесполое размножение (конидиями) наблюдается редко. Органами полового размножения служат «базидии с базидиоспорами. У одних грибов базидии одноклеточные, у других - многоклеточные (см. рис. 12, 1, 2). Одноклеточные базидии цилиндрической или булавовидной формы несут на четырех коротких выростах (стеригмах) по одной базидиоспоре. Многоклеточные базидии состоят из четырех клеток, на которых находится по одной базидиоспоре на стеригме. Базидии с базидиоспорами могут развиваться непосредственно на мицелии, но у многих базидиомицетов имеются плодовые тела.

Базидиальные грибы с одноклеточными базидиями широко распространены в природе. Большинство их живут в почве, на растительных остатках, некоторые - на деревьях. Базидии с базидиоспорами у большинства развиваются слоями на плодовых телах или внутри них. Строение, форма и консистенция плодовых тел разнообразны и характерны для разных видов грибов. В состав этой группы базидиомицетов входят шляпочные и трутовые грибы.

Дейтеромицеты, или несовершенные грибы (Deuteromycetes ). Это грибы с клеточным мицелием, у которых не обнаружено полового размножения. Большинство их размножается конидиями. Конидиеносцы у разных видов имеют различный внешний вид, располагаются одиночно или группами. Некоторые грибы образуют оидии (артроспоры), имеются формы и без специальных органов размножения. Конидии разнообразны по форме, строению, окраске; они могут быть одноклеточными и многоклеточными.

Наиболее распространенными и опасными возбудителями порчи продуктов являются следующие грибы.

Фузариум (Fusarium) имеет два типа конидий:. Некоторые виды Fusarium поражают клубни картофеля (см. с. 238).

Оидиум (Oidium ) образует разветвленный белый мицелий, гифы которого легко распадаются на оидии (см. рис. 10, а).

Один из видов этого рода - Oidium lactis (geotrichum candiclum) - молочная плесень, часто развивается в виде бархатистой пленки на поверхности квашеных овощей и кисломолочных продуктов при их хранении. Гриб использует находящуюся в этих продуктах молочную кислоту, что приводит к их порче. В молочных продуктах оидиум разлагает белки, жиры. Эта плесень встречается также на прессованных дрожжах, сливочном масле, сыре и других продуктах.

Монилия (Monilia)-гриб, не имеющий настоящих конидиеносцев. Конидии, соединенные в простые или ветвящиеся цепочки, располагаются на коротких отростках мицелия. Эти грибы являются активными возбудителями порчи плодов (см. рис. 44 и с. 233).

Кладоспориум (Cladosporium) имеет слабоветвящиеся конидиеносцы, несущие на концах цепочки конидий (рис. 16,г). Конидии бывают разнообразной формы (округлой, овальной, цилиндрической и др.) и размеров, нередко двухклеточными Мицелий, конидиеносцы и конидии окрашены в оливково-зеленый цвет. Эти грибы характерны тем, что выделяют в среду темный пигмент.

Кладоспориум нередко обнаруживается при холодильном хранении на различных пищевых продуктах в виде бархатистых темно-оливковых (до черного цвета) пятен;

ДРОЖЖИ

Общая характеристика

Дрожжи являются одноклеточными неподвижными организмами, широко распространенными в природе; они встречаются в почве, на растениях, в разнообразных субстратах, содержащих сахар.

Широкое использование дрожжей в промышленности основано на их способности вызывать спиртовое брожение - превращение сахара в этиловый спирт и углекислый газ.

С другой стороны, развитие дрожжей в пищевых продуктах вызывает их порчу (вспучивание, изменение запаха и вкуса).

Форма и строение дрожжевой клетки. Форма клеток дрожжей чаще округлая, овально-яйцевидная или эллиптическая, реже цилиндрическая и лимоновидная (рис. 17). Встречаются дрожжи особой формы - серповидные, стреловидные, треугольные. Размеры дрожжевых клеток обычно не превышают 10-15 мкм.

Дрожжи относятся к эукариотным организмам; строение их клетки сходно со строением клетки грибов.

У некоторых дрожжей оболочка может в той или иной степени ослизняться, вследствие чего клетки склеиваются друг с другом и при развитии в жидких средах образуют оседающие на дно сосуда хлопья. Такие дрожжи называют хлопьевидными в отличие от пылевидных, клеточные стенки которых не ослизняются; пылевидные дрожжи в жидкости находятся во взвешенном состоянии.

Размножение дрожжей . Наиболее характерным и широко распространенным у дрожжей вегетативным способом размножения является почкование, лишь немногие дрожжи размножаются делением.

Процесс почкования состоит в том, что на клетке появляется бугорок (иногда их несколько), который постепенно увеличивается в размерах, Этот бугорок называют почкой. Почкованию предшествует разделение ядра на две части, и одно вместе с частью цитоплазмы и другими клеточными элементами переходит в формирующуюся молодую клетку. По мере роста почки в месте соединения ее с материнской клеткой образуется перетяжка, отграничивающая молодую дочернюю клетку, которая затем либо отшнуровывается (отделяется) от материнской клетки, либо остается на ней. При благоприятных условиях этот процесс длится около двух часов.

Рис. 17. Дрожжи

Помимо почкования, многие дрожжи размножаются с помощью спор. Образование спор у дрожжей может происходить бесполым и половым путями. При бесполом образовании спор ядро клетки делится на столько частей, сколько образуется спор у данного вида дрожжей, после чего постепенно в клетке (как в сумке) образуются аскоспоры (см. рис. 17, внизу, справа). Образованию спор половым путем предшествует слияние (копуляция) клеток. У некоторых дрожжей копулируют прорастающие споры. Число спор в клетке разных видов дрожжей различно. Их может быть две, четыре, а иногда восемь и даже двенадцать.

Споры большинства дрожжей округлые или овальные, но у некоторых игловидные, шляповидные. У многих на поверхности спор имеются образования типа выростов, бородавок.

Споры дрожжей более устойчивы к неблагоприятным воздействиям, чем вегетативные клетки, но менее стойки, чем бактериальные споры.

В благоприятных условиях споры прорастают в клетки. У многих так называемых культурных дрожжей, т. е. культивируемых человеком для производственно-хозяйственных целей, способность к спорообразованию в значительной степени ослаблена, а иногда полностью утрачена. Такие дрожжи можно вернуть к спорообразованию только принудительным путем. Для этого молодую культуру дрожжей переводят из условий обильного питания в условия голодания. При благоприятной аэрации и температуре дрожжи образуют споры.

Размещено на Allbest.ru

...

Подобные документы

    История микроскопа и изучение морфологии микроорганизмов как собирательной группы живых организмов: бактерии, археи, грибы, протисты. Формы, размер, морфология и строение бактерий, их классификация и химический состав. Строение и классификация грибов.

    реферат , добавлен 05.12.2010

    Исследование морфологических признаков бактерий, микроскопических грибов и дрожжей. Изучение внешнего вида, формы, особенностей строения, способности к движению, спорообразованию, способов размножения микроорганизмов. Форма и строение дрожжевой клетки.

    реферат , добавлен 05.03.2016

    Систематика - распределение микроорганизмов в соответствии с их происхождением и биологическим сходством. Морфология бактерий, особенности строения бактериальной клетки. Морфологическая характеристика грибов, актиномицетов (лучистых грибов) и простейших.

    реферат , добавлен 21.01.2010

    Споры – форма бактерий с грамположительным типом строения клеточной стенки. Роль спорообразования бактерий и грибов для практики. Строение и особенности химического состава бактериальной споры. Микробиологическое обоснование пастеризации и стерилизации.

    контрольная работа , добавлен 02.10.2011

    Систематика микроорганизмов по фенотипическим, генотипическим и филогенетическим признакам. Отличия прокариот и эукариот, анатомия бактериальной клетки. Морфология микроорганизмов: кокки, палочки, извитые и нитевидные формы. Генетическая система бактерий.

    презентация , добавлен 13.09.2015

    Видоизменения мицелия в процессе приспособления к различным наземным условиям обитания. Размножение, питание и классификация грибов, их значение в биосфере и народном хозяйстве. Строение клетки гриба и бактериальной клетки, жизнедеятельность грибов.

    реферат , добавлен 05.06.2010

    Особенности питания и строения грибов как отдельной группы микроорганизмов. Рост гифов гриба и строение клеточной стенки гифа (липиды, хитин). Характеристика способов размножения грибов: вегетативное, почкообразование, спорообразование, деление клетки.

    презентация , добавлен 25.02.2015

    История открытия микроорганизмов. Клеточная стенка - структурный элемент бактериальной клетки, ее строение у грамотрицательных и грамположительных бактерий. Состав гомогенного слоя клеточной стенки. Функция пептидогликана; периплазматическое пространство.

    реферат , добавлен 15.05.2012

    Формы и размеры бактериальных организмов и их краткая характеристика. Строение бактериальной клетки, движение бактерий. Спорообразование и его биологическая роль, размножение бактерий. Передача признаков с помощью процессов трансдукции и трансформации.

    лекция , добавлен 25.03.2013

    Группа микроскопических одноклеточных организмов-прокариотов. Микроскопические методы исследования микроорганизмов. Формы, строение и химический состав бактериальной клетки. Функции поверхностных структур. Дыхание, питание, рост и размножение бактерий.

а) Кокки . В процессе деления новые молодые клетки могут образовывать специфические скопления. По взаимному расположению клеток после деления кокки подразделяются на следующие морфологические группы (рис. 2.1):

1 – монококки – клетки располагающиеся по одной, изолированно друг от друга (Micrococcus roseus);

2 – диплококки, или парные кокки, – клетки, располагающиеся попарно или в коротких (4-6) цепочках (Leuconostoc mesenterioides, Neisseria gonorrhoeae);

3 – стрептококки – соединение отдельных кокков в виде цепочек (Streptococcus lactis);

4 – сарцины - группа кокков, клетки которых образуют плотно упакованные угловатые скопления, напоминающие кубики или перевязанные тюки (Sarcina flava, Sarcina ureae);

5 – стафилококки - неоформленные скопления кокков, (Staphilococcus aureus, Staph. epidermidis).

Однако среди кокков встречаются такие, которые не имеют форму правильных шаров. Так, возбудитель гонорреи имеет бобовидную форму, возбудитель скисания пива – Leuconostoc mesenterioides – вытянутую форму. Кроме того, необходимо отметить, что форма клеток многих бактерий может меняться в зависимости от их физиологического состояния.


Рис. 2.1. Бактерии. Шаровидные формы.

1 - микрококки; 2 - диплококки; 3 - стрептококки; 4 - сарцины;

5 - стафилококки.

б) Палочки. К. этой группе относятся микробы, имеющие форму цилиндрических клеток. Некоторые из них образуют эндоспоры (p. Bacillus, p. Clostridium ) и иногда в обиходе называются бациллами, не образующие эндоспор (p. Salmonella, p. Pseudomonas и др.) – бактериями. Палочки, подобно коккам, могут давать различные сочетания:


Рис. 2.2. Бактнрии палочктвидной формы.

Палочки, соединенные по две, носят название диплобацилл, или диплобактерий;

Палочки, соединенные в цепочку, образуют стрептобациллы, или

Стрептобактерии (рис.2.2).

У одних палочек концы закругленные, у других– прямые, у третьих –заостренные.

в) К третьей группе относятся бактерии, извитые в виде спирали. Среди них различают палочки, слегка изогнутые в виде запятой - вибрионы; спирально извитые микроорганизмы -спириллы и спирохеты (рис.2.3).


Рис. 2.3. Извитые формы.

1 - вибрион; 2 - спирилла; 3 - спирохеты

Размеры клеток

Размеры клетки определяют под микроскопом c помощью окулярной линейки (микрометра). У кокков измеряют диаметр, у других форм - длину и ширину клетки. Результаты измерений выражают в микрометрах (мкм). Для измерения лучше использовать живые, а не фиксированные клетки, так как фиксация и окраска может несколько изменить их размеры. Если клетки подвижны, препарат слегка подогревают или к капле исследуемой суспензии добавляют каплю 0,1%-ного водного раствора агар-агара.

В окуляр микроскопа вставляют окулярную линейку. Для этого вывинчивают глазную линзу окуляра, помещают на его диафрагму окулярную линейку и завинчивают линзу вновь. На столик микроскопа кладут препарат, фокусируют объект и определяют, скольким делениям линейки соответствует длина и ширина клетки при данном увеличении микроскопа. Чтобы результат был достоверным, измеряют не менее 10-20 клеток. Результаты вносят в таблицу.

Однако делениями окуляр-микрометра нельзя непосредственно измерить клетку, так как цена деления окулярной линейки зависит от используемого в каждом случае объектива. Поэтому необходимо определить цену деления окулярного микрометра для данного увеличения микроскопа и выразить ее в микрометрах. Это делают с помощью объективного микрометра.

Объективный микрометр (рис.) представляет собой металлическую пластинку с отверстием в центре, в которое вставлено стекло. На стекло нанесена линейка длиной 1 мм, которая разделена точно на 100 частей, так что одно деление ее соответствует 0,01 мм или 10 мкм.

Для определения цены деления окулярной линейки на столик микроскопа вместо препарата помещают объективный микрометр и вначале при малом увеличении фокусируют изображение линейки. Затем перемещают линейку объект-микрометра в центр поля зрения и только после этого меняют объектив на тот, при котором измеряли клетки. Перемещая столик микроскопа и поворачивая окуляр, устанавливают микрометры так, чтобы их шкалы были параллельны и одна перекрывала другую. Совмещают одно из делений шкалы окулярного и объективного микрометров и находят следующее их совмещение. Устанавливают, какую часть деления объективного микрометра составляет одно деление окулярной линейки, и умножают полученное число на 10. Таким образом, получают цену деления окулярного микрометра в микрометрах для данного увеличения микроскопа. Например, в два деления объективного микрометра, т. е. в 20 мкм, укладывается 9 делений окулярного микрометра, следовательно, одно деление окуляр-микрометра при данном увеличении микроскопа соответствует 2,22 мкм (рис. 2.4).

Зная, скольким делениям окулярной линейки соответствует длина и ширина изучаемого объекта, умножают цену деления окуляр-микрометра на эти числа. Полученные числа (длину и ширину клетки в мкм) вносят в таблицу.



Рис. 2.4. Объект-микрометр – а. Совмещение шкал окулярной линейки и шкалы объект-микрометра.

При сложных методах окраски микробов на один и тот же препарат воздействуют несколькими растворами. К сложным методам относится окраска по Граму, Циль-Нильсену, по Нейссеру и т. д. Используя такие методы окраски можно выявлять различные свойства бактерий. Окраска методом Грама позволяет дифференцировать бактерии с разным строением клеточной стенки.

ВВЕДЕНИЕ

ПРЕДМЕТ И ЗАДАЧИ МЕДИЦИНСКОЙ МИКРОБИОЛОГИИ

ИСТОРИЯ РАЗВИТИЯ МЕДИЦИНСКОЙ МИКРОБИОЛОГИИ

СИСТЕМАТИКА И КЛАССИФИКАЦИЯ МИКРООРГАНИЗМОВ

Основы морфологии бактерий

БАКТЕРИИ

ВВЕДЕНИЕ

Наша планета населена огромным числом живых существ. Микроорганизмы наиболее древняя форма жизни на Земле, они появились 3-4 млрд. лет тому назад. Их можно обнаружить в почве, в пыли, в воде, в воздухе, на покровах животных и растений, внутри организмов и даже в горячих источниках, в космосе. Все живые организмы, населяющие нашу планету, относятся к макро- или микромиру.

К макромиру принадлежат организмы, видимые невооруженным глазом:

млекопитающие

пресмыкающиеся

птицы, рыбы и др.

К микромиру - представители живой природы, которых можно наблюдать с помощью микроскопа:

бактерии

простейшие

С точки зрения медицины все микробы можно разделить на 3 группы:

Ø Бактерии и грибы разрушают органическое вещество и участвуют в круговороте веществ в природе.

Ø Разлагая органические вещества, микроорганизмы являются причиной порчи продуктов.

Ø Некоторые микроорганизмы в результате своей жизнедеятельности разрушают человеческие строения, чем наносят огромный ущерб.

Ø Человек использует бактерии для очистки сточных вод.

Ø Человек получает с помощью микроорганизмов множество незаменимых продуктов (хлеб и сыр, вино и кумыс, льняная пряжа).

Ø Некоторые микроорганизмы являются причиной инфекционных заболеваний человека.

Ø В кишечнике человека и других животных живут многие бактерии-симбионты, которые приносят огромную пользу организму.

Ø Бактерии, живущие внутри организма, выделяют дополнительное тепло.

Ø Человек заставил микробы вырабатывать бактериальные удобрения, антибиотики, витамины, препараты для защиты растений. Такое техническое использование микроорганизмов называется биотехнологией.

Ø Методом генетической инженерии получают многие белковые биологические вещества, представляющие ценность для медицины.

ПРЕДМЕТ И ЗАДАЧИ МЕДИЦИНСКОЙ МИКРОБИОЛОГИИ

Микробиология (греч.micros - малый, лат.bios - жизнь, logos- учение) - наука, предметом изучения которой являются микроскопические существа, называемые микроорганизмами, или микробами, их биологические признаки, систематика, экология, взаимоотношения с другими организмами, населяющими нашу планету, - животными, растениями и человеком. Медицинская микробиология и иммунология тесно связаны со всеми медицинскими дисциплинами (инфектологией, терапией, педиатрией, хирургией, фтизиатрией, гигиеной, фармакологией и др.). Значительно возросла роль микробиологии, вирусологии и иммунологии в решении многих проблем здравоохранения.

Цель медицинской микробиологии - глубокое изучение структуры и важнейших биологических свойств патогенных микробов, взаимоотношения их с организмом человека в определенных условиях природной и социальной среды, совершенствование методов микробиологической диагностики, разработка новых, более эффективных лечебных и профилактических препаратов, решение такой важной проблемы, как ликвидация и предупреждение инфекционных болезней. Микробиология изучает многообразный мир микробов. В своем развитии она разделилась на несколько самостоятельных дисциплин. В первую очередь её можно разделить на общую и частную микробиологию.

В зависимости от решаемых задач делится:

микробиология бактерия клетка морфология

ИСТОРИЯ РАЗВИТИЯ МЕДИЦИНСКОЙ МИКРОБИОЛОГИИ

Медицинская микробиология развилась в результате изучения инфекционных болезней.

История развития медицинской микробиологии как самостоятельной научной дисциплины насчитывает несколько этапов, обусловленных не столько временными периодами, сколько уровнем развития науки и техники.

Эвристический этап - период догадок и случайных находок. О существовании микробов догадывались уже древние мыслители и врачи. «Отец медицины» Гиппократ считал, что некоторые болезни человека вызываются какими-то невидимыми частицами, которые он называл миазами. О живой природе миазм начали догадываться значительно позднее. Римский поэт Веррон уже определенно считал миазмы живыми существами. Итальянский врач Джироламо Фракасторо, живший в середине века, писал, что заболевания передаются от человека человеку «живыми контагиями». Он создал учение о живом «контагии» - «мельчайших и недоступных нашим чувствам частиц», которые, проникая в организм человека, вызывают болезнь.

Величайшее открытие эвристического периода в медицинской микробиологии было сделано в конце 18 в. Э.Дженнером, который предложил вакцинацию против черной оспы путем нанесения на кожу человека содержимого оспин (пустул) от больных коров. Вирус коровьей оспы, содержащийся в пустулах, предохранял человека от заражения черной оспы. Еще не была доказана роль микробов в патологии, еще не была разработана теория защитных прививок, но микробиология начала реально помогать людям.

Морфологический этап микробиологии начался в 17 в., когда голландский натуралист А. Левенгук впервые увидел микробы, находящиеся в воде, травяных настоях, пищевых продуктах, ротовой полости, кишечнике и т.д. Для своих наблюдений он использовал двояковыпуклые линзы (лупы), приготовленные им самим. Они давали увеличение в 160 - 200 раз. Увиденные микробы А. Левенгук назвал ничтожными «зверушками» и подробно описал их в письмах в Британское королевское научное общество. все его описания форм микробов (шарообразные, палочковидные, извитые и др.) были настолько точны, что до настоящего времени сохранили свое значение.

Прообраз микроскопа как систему двух линз (объектива и окуляра) создал в 1590г. голландец З. Янсен. В последующие годы этот прибор многократно усовершенствовался. В результате в середине ХIХ века появился микроскоп, который по техническим возможностям не уступал современным световым микроскопам. Он мог увеличивать рассматриваемые предметы в 1000 раз. Создание микроскопов стимулировало развитие микробиологии. Начался период «охотников за микробами».

Первыми были открыты возбудители заболеваний волос и кожи человека: парши (Шенлейн), стригущего лишая (Груби), отрубевидного лишая (Эйхштедт) и молочницы (Лагенбек, Груби). Так зародилась наука о патогенных грибах - микология.

Развитие микробиологии ускорилось после того, как Р.Кох в конце ХIХ века разработал твердые питательные среды для получения чистых культур микроорганизмов, а также предложил использовать красители для изучения морфологии микробных клеток.

Различные микробиологические методики, разработанные Р. Кохом, позволили изучить возбудителей почти всех инфекционных заболеваний. Р. Кох выделил чистую культуру возбудителя сибирской язвы, туберкулёза (палочка Коха) и холеры (запятая Коха).

Среди всех «охотников за микробами» самым знаменитым был французский ученый Л. Пастер. Он доказал патологическую роль микробов родильной горячки, абсцессов и остеомиелита.

В последующие годы Т. Эшерих открыл кишечную палочку, Э. Ру - дифтерийную палочку, Д. Сальмон - возбудителей кишечных инфекций. Вслед за ними последовали новые открытия. К. Шига описал возбудителей дизентерии и коклюша, Г. Ганзен - проказы, С. Китазато - столбняка и чумы, а Ф. Шаудин и Э. Гофман - сифилиса.

Важнейшим событием в микробиологии было обнаружение ядовитых веществ (токсинов), выделяемых микробами. Это было сделано учеником Л. Пастера - Э. Ру, которые доказал, что основные симптомы и тяжесть течения дифтерии обусловлены токсином, выделяемым дифтерийной палочкой. Им был предложен способ лечения дифтерии при помощи специфических белков сыворотки крови (антител), нейтрализующих микробный токсин. Все перечисленные «охотники за микробами» заложили основы медицинской микробиологии.

Еще в конце ХIХ века обнаружено, что болезни человека могут быть вызваны не только бактериями, но и простейшими. Русские ученые Ф.А. Леш и П.Ф. Боровский открыли возбудителей амёбной дизентерии и кожного лейшманиоза. В дальнейшем доказана патогенная роль малярийного плазмодия, трихомонад, токсоплазм, балантий и других простейших. Зародилось новое направление в медицинской микробиологии - протозоология.

Русский ученый И.И. Мечников, работавший в институте Л. Пастера, первым изучил мир собственной микрофлоры организма и других микробов, окружающих человека. Он первым указал на большое значение микрофлоры для жизнедеятельности человека в норме и при патологии. Болезнетворные свойства микробов аутофлоры и окружающей среды проявляются только при ухудшении здоровья человека (условно-патогенные микробы). Таким образом, И.И. Мечников является основоположником нового раздела микробиологии - экологической микробиологии.

Морфологический период развития микробиологии не окончен, так как ученые делают все новые и новые открытия. Всего к настоящему времени было выделено и изучено около 4000 видов бактерий.

Развитие микробиологической техники, создание мелкопористых фильтров с определенным размером пор, использование метода культуры клеток позволили открыть вирусы. Период «охотников за микробами» сменился периодом «охотников за вирусами». Первым из них был русский ученый Д.И. Ивановский, выделивший в чистом виде (1892) вирус табачной мозаики. Вслед за ним Ф. Леффлер и П. Фрош открыли вирус ящура, поражающего животных, Т. Смит - вирус желтой лихорадки, вызывающий поражение печени у людей, Ф. Дэрелль - бактериофаг (вирус, поражающий бактерии), В. Смит с соавторами - вирус гриппа, Л.А. Зильбер - вирус энцефалита и онкогенные вирусы. Возникла новая наука - вирусология.

Развитию вирусологии способствовало изобретение в 30-е годы ХХ века электронного микроскопа, в котором в качестве осветителя используется источник электронов, фокусируемых электростатическими линзами. Электронный микроскоп в 10 000 раз увеличивает изображение объекта. Его создание позволило увидеть «портреты» вирусов.

Изучение патогенных вирусов продолжается. В 1982 году Л. Монтанье и Р. Гало открыли вирус иммунодефицита человека (ВИЧ/СПИД). В 2003 году китайские ученые описали вирус, вызывающий острый респираторный синдром (SARS) - атипичную пневмонию.

В 1963 году американский ученый К. Гайдушек доказал существование принципиально нового инфекционного начала, названного прионом. В отличие от всех других микробов прионы не содержат нуклеиновых кислот и являются белками с низкой молекулярной массой (инфекционные белковые молекулы). Они поражают клетки ЦНС, вызывают их разрыв и губкообразное перерождение, что закономерно заканчивается гибелью организма. Вызываемые прионами болезни стали называть «медленными инфекциями», так как между заражением и гибелью организма проходило от 5 до 20 лет. До настоящего времени не разработано средств лечения этих заболеваний.

Обнаружение возбудителей болезней сопровождалось изучением их биологических свойств. За морфологическим периодом развития микробиологии последовал ФИЗИОЛОГИЧЕСКИЙ. В этот период изучены процессы обмена веществ и дыхания у микробов, их ферментативная активность, размножение и рост на питательных средах. Физиологический период развития микробиологии связан с именем Л. Пастера. Он открыл ферментативную природу брожения, вызываемого жизнедеятельностью микробов, и заложил основы промышленной микробиологии, основал принципы стерилизации питательных сред. Изучение особенностей жизнедеятельности микробов привело к появлению противобактериальных препаратов, способных убивать микробы в организме или препятствовать их размножению (сульфаниламиды и антибиотики). Основоположниками химиотерапии можно считать П. Эрлиха, синтезировавшего сульфаниламид - стрептоцид. Первый антибиотик пенициллин выделен в химически чистом виде английским ученым А. Флемингом и отечественным микробиологом З. В. Ермольевой. С каждым годом расширяется список противобактериальных препаратов. В настоящее время их количество исчисляется сотнями. Были получены препараты, обладающие противовирусной активностью (интерферон).

С именами Л. Пастера, И.И. Мечникова и П. Эрлиха связан иммунологический этап развития микробиологии. В медицинскую практику вошли профилактические вакцины, приготовленные из микробов против многих инфекционных заболеваний, а также лечебные сыворотки, содержащие специфические антитела против микробных токсинов.

В ХХ веке начался этап развития молекулярно-генетической микробиологии и иммунологии. В это время изучали основы молекулярного строения микробов, антител, генетического аппарата клеток и, наконец, генетического кода человека, обеспечивающего, в частности, иммунный ответ организма.

СИСТЕМАТИКА И КЛАССИФИКАЦИЯ МИКРООРГАНИЗМОВ

М/о - это организмы, невидимые невооруженным глазом из-за их незначительных размеров.

Базовая категория (таксон) биологической классификации, отражающая определенную стадию эволюции отдельной популяции организмов - вид. Вид - эволюционно сложившаяся совокупность особей, имеющая единый генотип, который в стандартных условиях проявляется сходными морфологическими, биохимическими и другими признаками. Принципы таксономии и номенклатуры микроорганизмов

Живые организмы (микроорганизмы) М/о относятся к 3 царствам:

Прокариоты PROCARIOTAE:

Эубактерии

Грациликуты (тонкая клеточная стенка)

Фирмикуты (толстая клеточная стенка)

Спирохеты, риккетсии, хламидии, микоплазмы, актиномицеты. Архебактерии

Мендосикуты

Эукариоты EUCARIOTAE: Животные Растения Грибы ПростейшиеНеклеточные формы жизни VIRA: Вирусы Прионы Плазмиды

Для микроорганизмов приняты следующие категории (таксоны) таксономической иерархии (по восходящей): Вид - Род - Семейство - Порядок - Класс - Отдел - Царство.

Названия видов биноминальны (бинарны), то есть обозначаются двумя словами. Первое слово обозначает Род и пишется с заглавной буквы, второе слово обозначает Вид и пишется со строчной буквы.

Схема формирования биноминального названия микроорганизмов.



Примеры конструирования биноминального названия бактерий.

Вид бактерий

Условное обозначение принадлежности к:


Bacillus anthracis

Bacillus (палочка)

anthracis (уголь - «антрацит»)

Clostridium tetanus

Clostridium (веретено)

tetanus (судороги)

Staphilococcus aureus

Staphilococcus (гроздья винограда, шар)

aureus (золотистый цвет колонии)

Shigella dysenteriae

dysenteriae (расстройство кишечника)

coli (кишка)

Salmonella typhi

typhus («туман» - бред)


ОСНОВЫ МОРФОЛОГИИ БАКТЕРИЙ

Специализированные термины:

Штамм - культура микроорганизмов, выделенная из определенного конкретного источника (организма или объекта окружающей среды).

Форма бактерий. Размер бактерий.

Строение бактериальной клетки.

Характеристика некоторых групп бактерий.

ФОРМА БАКТЕРИЙ. РАЗМЕР БАКТЕРИЙ

Отдельным видам бактерий с достаточным постоянством присущи определенные формы и размер.

Выделяют три основные формы бактерий - шаровидные, палочковидные и извитые.

Шаровидные бактерии, или кокки

Форма шаровидная или овальная.

Микрококки - отдельно расположенные клетки.

Диплококки - располагаются парами.

Стрептококки - клетки округлой или вытянутой формы, составляющие цепочку.

Сарцины - располагаются в виде «пакетов» из 8 и более кокков. Стафилококки - кокки, расположенные в виде грозди винограда в результате деления в разных плоскостях.

Рис. 1. Шаровидные бактерии (энтерококки). Электронная микрофотография (ЭМ).

Палочковидные бактерии. Форма палочковидная, концы клетки могут быть заостренными, закругленными, обрубленными, расщепленными, расширенными. Палочки могут быть правильной и неправильной формы, в том числе ветвящиеся, например у актиномицетов.

По характеру расположения клеток в мазках выделяют:

Монобактерии - расположены отдельными клетками.

Диплобактерии - расположены по две клетки.

Стрептобактериии - после деления образуют цепочки клеток.

Палочковидные бактерии могут образовывать споры: бациллы и клостридии.

Рис. 2. Палочковидные бактерии (кишечная палочка). ЭМ.

Извитые бактерии

Форма - изогнутое тело в один или несколько оборотов.

Вибрионы - изогнутость тела не превышает одного оборота.

Спирохеты - изгибы тела в один или несколько оборотов.

Рис. 3. Извитые бактерии (холерный вибрион). ЭМ.

Размер бактерий

Микроорганизмы измеряются в микрометрах и нанометрах.

Средние размеры бактерий - 2 - 3 х 0,3 - 0,8 мкм.

Форма и размер - важный диагностический признак.

Способность бактерий изменять свою форму и величину называется полиморфизм.

БАКТЕРИИ

СТРОЕНИЕ БАКТЕРИАЛЬНОЙ КЛЕТКИ

Строение бактерий.

Тело бактерии состоит из цитоплазмы (с различными включениями) и цитоплазматической мембраны, окруженных клеточной стенкой.

Цитоплазма занимает основной объем бактериальной клетки. Важнейшим компонентом цитоплазмы является нуктеотид, который считается эквивалентом ядра и расположен в центральной зоне бактерии. Кроме нуклеотида, в цитоплазме находятся плазмиды, являющиеся факторами наследственности (их может быть от 1 до 200).

Цитоплазматическая мембрана ограничивает цитоплазму (участвует в транспорте питательных веществ).

Между клеточной стенкой и цитоплазматической мембраной находится пространство - периплазма, содержащая ферменты.

Клеточная стенка - прочная структура, придающая бактерии определенную форму. По типу строения клеточной стенки бактерии подразделяют на грамположительные с толстой стенкой и грамотрицательные с тонкой клеточной стенкой.

Основным компонентом клеточной стенки у грамположительных бактерий является пептидоглюкан, способный удерживать краску генцианвиолет в комплексе с йодом (сине-фиолетовый цвет) при обработке препарата спиртом.

Клетки бактерий в процессе жизнедеятельности образуют защитные органеллы - капсулы и споры.

Капсула - внешний уплотненный слизистый слой, примыкающий к клеточной стенке. Это защитный орган, который появляется у некоторых бактерий при попадании их в организм человека или животных. Капсула предохраняет м/о от защитных факторов организма (препятствуют захвату бактерий фагоцитами).

Спора - форма грамположительных бактерий, образующаяся при неблагоприятных условиях существования клетки (высушивание, дефицит питательных веществ, изменение температуры и др). Образование спор способствует сохранению вида и не имеет отношения к размножению бактерий.

Спорообразующие аэробные бактерии называются бациллами, а анаэробные - клостридиями.

Споры отличаются по форме, размерам и расположению в клетке. Они могут располагаться:


Жгутики обеспечивают подвижность микроба, их имеют только палочковидные бактерии, они берут начало от цитоплазматической мембраны.

По числу жгутиков различают:

Монотрих (один у холерного вибриона);

Перитрих (до сотен у кишечной палочки)

Амфитрихи - по одному или нескольку жгутиков на противоположных концах микробной клетки (спириллы)

Лофотрихи - имеют пучок жгутиков на одном из концов клетки.

Ворсинки, или пили, - нитевидные образования, более короткие, чем жгутики. Они отходят от поверхности бактерии, состоят из белка пилина и ответственны за прилипание микроба к поражаемой клетке. Среди пилей выделяют половые пили, присущие "мужским" клеткам-донорам, содержащим трансмиссивные плазмиды (F, R, Col). Бактериальная клетка состоит из клеточной стенки, цитоплазматической мембраны, цитоплазмы с включениями и так называемым нуклеоидом. Имеются дополнительные структуры: капсула, микрокапсула, жгутики, пили. Некоторые бактерии в неблагоприятных условиях способны образовывать споры.

Рис. 4. Строение бактериальной клетки (схема). Сapsule - капсула; Сell wall - клеточная стенка; Cytoplasmic membrane - цитоплазматическая мембрана; Mesosome - мезосома; Flagellum - жгутик; Pili - пили; Cytoplasma - цитоплазма; Nucleoid - нуклеоид; Ribosomes - рибосомы; Granular inclusion - включения.

Рис. 5. Определите форменные элементы бактериальной клетки.

Грамположительные бактерии имеют толстую (многослойную) клеточную стенку.

Окрашиваются по Граму в фиолетовый цвет.

Грамотрицательные бактерии имеют тонкую клеточную стенку, прикрытую снаружи тройным липидсодержащим слоем (внешняя мембрана).Окрашиваются по Граму в красный цвет.

Рис. 6. Строение клеточной стенки грамположительных (А) и грамотрицательных (Б) бактерий (схема).

У грамположительных бактерий (А) основной слой - пептидогликан - многослойный и пронизан тейхоевыми кислотами (толстая клеточная стенка); у грамотрицательных бактерий (Б) тонкий пептидогликан и над ним расположена внешняя мембрана, содержащая липиды (тонкая клеточная стенка).

Тинкториальные свойства - восприимчивость микроорганизмов к различным красителям.формы - бактерии, полностью лишенные клеточной стенки и способные размножаться.

Споры и спорообразование

Споры бактерий - своеобразная форма покоящихся бактерий, форма сохранения наследственной информации в неблагоприятных условиях внешней среды и не является способом размножения, как у грибов.

Процесс спорообразования: спорогенная зона - проспора - спора.

В благоприятных условиях споры прорастают за 4-5 часов. Образуют споры в течение 18-20 часов.

Рис. 7. Спора внутри бактериальной клетки (ЭМ).

Рис. 8. Споры сибиреязвенной палочки (светооптическая микроскопия, СМ).